
Journal of Advances in Technology and Engineering Studies JATER
2017, 3(4): 150-169

PRIMARY RESEARCH

In search of missing design rules: Using rule induction to extend existing rule
bases

Julian R. Eichhoff 1*, Felix W. Baumann 2, Dieter Roller 3

1, 2, 3 University of Stuttgart, Stuttgart, Germany

Index Terms
Learning Problems

Induction Rules

Conceptual Design

Received: 24 February 2017

Accepted: 12 June 2017

Published: 21 August 2017

Abstract— This paper focuses on amachine learning problem that is especially relevant for the automa-

tion of graph-based conceptual design. In this 􀅭ield, graph-rewriting systems can be used to facilitate design

automation. The present work deals with the automatic induction of production rules for graph-rewriting

systems from example design graphs. An approach to this is presented and empirically evaluated in the

context of prototypical applications for functional design. The approach suf􀅭ices the requirement that the

learned rules have to 􀅭it an existing rule set, but the inspection of existing rule de􀅭initions is prohibited.

The results suggest that the proposed approach is able to achieve reasonable, but sometimes unexpected

learning results.

© 2017 The Author(s). Published by TAF Publishing.

I. INTRODUCTION

RAPH-BASEDmodels play an important role in prod-

uct design. Particularly in conceptual design, graphs

are used as abstract representation, e.g., to depict func-

tionality, topology and physical relations among product

components. Uni􀅭ied Modeling Language (UML) and its

derivate for systems engineering, Systems Modeling Lan-

guage (SysML) [1], for instance, are well known model-

ing frameworks that heavily rely on graph-based repre-

sentations. Graph-rewriting is an expressive (Habel and

Plump [2] showed that double-pushout graph-rewriting ap-

proaches supporting sequential composition and iteration

are Touring complete) computationmodel that uses graphs

for its data structure, and thus becomes a natural choice

for implementing computed-aided conceptual design soft-

ware [3, 4, 5, 6, 7, 8, 9, 10, 11]. The design compiler 43

[7], for instance, is a compre-hensive software using graph-

rewriting to automatically generate geometry fromabstract

UML-based product descriptions. It provides interfaces to

various Computer-Aided Design (CAD) applications, simu-

lation software, databases (e.g., for storing data about stock

components), and general-purpose mathematical compu-

tation software. Recently, Schmidt and Rudolph [12] used

43 to automatically create 􀅭low schematics for spacecraft

propulsion systems.

Fig. 1 . Simpli􀅭ied illustration of using graph-rewriting for CAD

Different propulsion system topologies are derived by

simply changing initial parameters de􀅭ined in the source

graph. The graph-rewriting engine then incrementally

builds up the topology. Graph-rewriting systems rely on a

set of so-called production rules for deriving graphs. These

rules are iteratively applied to generate a set of output

graphs from an input graph. Speaking in the words of

our domain: Production rules are encoded design actions,

*Corresponding author: Julian R. Eichhoff
†Email: eichhoff@informatik.uni-stuttgart.de

© The Author(s). Published by TAF Publishing. This is an Open Access article distributed under a Creative Commons

Attribution-NonCommercialNoDerivatives 4.0 International License

http://crossmark.crossref.org/dialog/?doi=10.20474/Jater-3.4.5&domain=pdf
eichhoff@informatik.uni-stuttgart.de
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

151 J. Adv. Tec. Eng. 2017

which are used to produce some target design models from

a given designmodel in a series of transformations (see Fig-

ure 1).

This claim is supported by examining the duality be-

tween graph-rewriting and design. Design states are rep-

resented as graphs, where nodes typically denote the ele-

ments of a design (e.g., compo-nents and (sub) assemblies,

but also functions, principles, modules, and requirements).

Relations among these elements are denoted by edges (e.g.,

component-to-assembly, function-to-component, function-

to-function, requirements tracing, etc.). Attributes of de-

sign elements or relations (used to de􀅭ine mass, price, ge-

ometric properties, etc.) are represented in terms of labels,

which are assigned to nodes or edges respectively. A de-

sign decision is the choice of one design state from a set of

possible states (design alternatives) based on information

which is provided at the time of decision making. In graph-

rewriting-based design systems, a design decision corre-

sponds to the choice of a subsequent graph from a set of

possible graphs based on information that is encoded in an-

other, existing “host graph”.

Such a move from one graph to another graph is

called a direct derivation. The term derivation is used to

denote a chain of multiple subsequent direct derivations,

hence a sequence of design decisions. In graph-rewriting

the reason for any direct derivation is the application of a

production rule. Such a rule captures the changes that are

made from one graph to another. It also de􀅭ines constraints

on possible host graphs, which must be ful􀅭illed before a

rule can be applied. What rules are considered for appli-

cation at a certain point in derivation is either controlled by

prewritten programor by a search framework that tests dif-

ferent sequences of rule applications. In graph-rewriting-

based design automation this search is guided towards a

sequence of rule applications that produces a design graph

maximizing compliance with some given design goals, i.e., a

form of design optimization. In this work we focus on one

aspect thereof, namely the de􀅭inition of production rules.

Hand-crafting production rules can be a tremendous

effort, which is a well known problem in the 􀅭ield of ex-

pert systems, called the “knowledge engineering bottle-

neck”. Consider functional decomposition [13] as an ex-

ample: Here, the input model is a black box description

of the product and the output models are possible decom-

positions, i.e. function structures, of that black box. Kur-

toglu and Campbell [14] showed how to yield a rule set for

functional decomposition by manually inspecting the com-

monalities among a set of function structures. Later, Kur-

toglu et al. [10] extended their work in terms of a graph

grammar for functional decomposition and component-to-

function assignment. In order to reduce the effort on hand-

crafting rules, our general aim is to automize the genera-

tion of production rule sets. Therefore methods from ma-

chine learning for rule induction are utilized. As we will

shortly see, this 􀅭ield of research is not new. Nonetheless,

mostworks consider the learning problemas a “blank page”

and induce a completely new rule set from a set of given ex-

amples.

This paper, in turn, focuses on the extension of an ex-

isting rule set: How to automatically induce a set of rules

that is capable of deriving a set of givenoutput graphs froma

given input graphwhile reusing asmany rules as possible of

an existing, yet incomplete initial rule set? We propose hav-

ing such an adaptive machine-learning strategy facilitates a

user's understanding of the rewrite-system's behavior. Es-

pecially because engineers are allowed to incorporate their

own hand-crafted rules, and automatically induced rules

are only added where needed. The present work proposes

two related approaches for this task and compares their

performance with respect to computational ef􀅭iciency and

quality of learning results. At the current stagewe are inter-

ested in learning a singlemissing rule for two reasons: First,

learning a singlemissing rule in context of others is thebasis

for inducing a set of rules. In section 6.1 ways are discussed

onhow touse theproposed single rule induction algorithms

to induce multiple missing rules. Second, by learning a sin-

gle missing rule one may actually learn a composite form of

multiple rules.

In graph-rewriting theory this is called amalgama-

tion [15]. It refers to the idea thatmultiple production rules

can be joined to form a single rule, and vice versa, that one

rule can be separated into a sequence of rules. The remain-

der of this paper is structured as follows: First, we pro-

vide fundamental de􀅭initions for labeled graphs and graph-

rewriting systems. Then, we introduce an example applica-

tion of graph-rewriting for functional decomposition, which

is later used as benchmark for experimentation. What fol-

lows is a review of related work from the 􀅭ields of grammar

and rule induction and an outline of their limitations. After

a formal discussion of themachine learning problem, an ap-

proach for solving it is proposed and its implementation us-

ing Genetic Programming (GP) is explained. The approach

is empirically tested in a series of computer experiments

and analyzed with respect to its learning performance and

computational ef􀅭iciency. The paper closes with concluding

remarks on the results and future work.

ISSN: 2414-4592

DOI: 10.20474/jater-3.4.5

2017 J. R. Eichhoff. F. W. Baumann, D. Roller- In search of missing design 152

II. GRAPH-REWRITING PRELIMINARIES

Next is a series of de􀅭initions for labeled graphs

and graph-rewriting systems from Eichhoff and Roller [16],

which are mainly based on Ehrig et al. [15]:

De􀅮inition 1. A label alphabet A=(AV , AE) is a pair of sets

of node labels and edge labels. A labeled graph over A is

a system G=(VG, EG, SG, tG, lG,mG) consisting of: A 􀅭inite

set of nodes VG and a 􀅭inite set of edgesEG.

A source function sG : VG→EG and a target function tG :

VG→EG (for de􀅭ining adjacencies and edge directions).

A node labeling function lG : VG→AV and an edge labeling

functionmG : EG→AE .

De􀅮inition 2. A graph morphism G→H or morhpism for

short is amap fromgraphG to another graphH. It consists of

two functions gV : VG→VH and gE : EG→EH that preserve

sources, targets and labels. A bijective graph morphism is

termed graph isomorphism and denoted by ≅.

De􀅮inition 3. A production rule p = 〈L←K→R〉 or rule for

short is a pair of graph morphisms with a common domain

K, called the interface. L is termed left-hand side andR right-

hand side. A rule p can be equipped with an additional ap-

plication condition acLo over L in order to further restrict

the application of the rule beside its occurrence morphism

(see below).

Such a rule is written as p = 〈acL, L←K→R〉 (with-

out loss of generalitywe suppose rules are de􀅭inedwith left-

hand side application conditions only. Ehrig et al. [15] calls

this “rules with left application condition”). Application

conditions are tree-structured logical formulas over graphs.

Every formulawithin such a treemust be satis􀅭ied by

a morphism before a rule with application condition can be

applied. An application condition acLover graph L and the

satisfaction of acLby a morphism o : L→G are de􀅭ined in-

ductively following Ehrig et al. [15].

Fig. 2 . Double-pushout diagram. Arrows depict graph

morphisms

Nesting: ∃ (a, ac,G) is an application condition over L for

every morphism a : L→G and every application condition

acG over G′. Here, acG is a nested application condition.

It introduces additional restrictions, which are themselves

dependent on the outer application condition. A morphism

o : L→G satis􀅭ies ∃(a, ac′G), denoted o⊨∃(a, acG) if there

exists a morphism b : G′→G such that b∘a = o and b⊨ ac′G.

Simple application condition: TRUE is an application condi-

tion over L. Every morphism satis􀅭ies TRUE. This is needed

at the point where no further nesting of application condi-

tions is required, i.e. ∃(a,TRUE).

Negation: For an application condition acL over L, ¬acL is

an application condition over L. A morphism o : L→G sat-

is􀅭ies ¬acL if o does not satisfy acL. Conjunction: For appli-

cation conditions acL, i over L with i ∈ I (for all index sets

I), ∧i∈IacLi is an application condition over L. A morphism

o : L→G satis􀅭ies ∧i∈IacLi if it satis􀅭ies each acL, i.

De􀅮inition 4. The application of a rule p on graph G with

respect to a certain occurrence o : L→G, which results in

graph H, is called a direct derivation and writtenG
p,q
==⇒can

be constructed, where H. It exists if and only if the double-

pushout diagram of Figure. 2 D is termed context. In the

case of p being equipped with acL over L then o⊨ acL
must also hold for any corresponding direct derivation. The

graph morphism q : R→H is termed co-occurrence. It is

the process of replacing an occurrence of L in graph G with

R leading to a new graph H. Thereby K and D contain those

nodes and edges of the rule respectively the graphwhich are

preserved during rule application.

De􀅮inition 5. A derivationG⇒p Hfrom graph G to graph H

is a sequence of direct derivationsG ⇒ G1 ⇒ G2 ⇒ ... ⇒
H over a set of rules P= {p1, p2,…} In this workwe suppose
that graph-rewriting systems are terminating, i.e., there are

no in􀅭inite sequences of direct derivations.

De􀅮inition6. A graph-rewriting system is a pair (P,G)where

P is a set of rules and G is an initial host graph used as start-

ing point for derivations. The set H comprises all graphs

that may be produced by derivations over (P,G) and is called

the language of the graph-rewriting system.

Fig. 3 . Black box model of the electric knife example. Depicted as

Sys ML Internal Block Diagram. H = human, HE = human

energy, EE = electrical energy, ME = mechanical energy, S

= solid

ISSN: 2414-4592

DOI: 10.20474/jater-3.4.5

153 J. Adv. Tec. Eng. 2017

III. GRAPH-REWRITING FOR FUNCTIONAL DECOMPOSITION

The herein proposed rule induction algorithms were

tested in context of awell-documented applicationof graph-

rewriting for functional decomposition. Sridharan and

Campbell [8] used graph-rewriting to de􀅭ine the functional

model of an electric knife. The functional model is estab-

lished in a process that mimics the functional decompo-

sition procedure suggested by Pahl et al. [13]: From a

simpli􀅭ied black box model that describes the knife's pri-

mary function (see Figure. 3), i.e., to “separate solids”, a

more complex model is derived. The latter is called func-

tion structure; it depicts what additional sub-functions are

needed and how theymust be related to each other in order

to attain the desired primary function. Within the graphi-

cal notation, directed edges represent 􀅭lows of signals, ma-

terials and forms of energy. The incident nodes represent

functions, which consume, produce or otherwise affect the

􀅭lows.

Fig. 4 . Rule 17. Left-hand side and right-hand side depicted as

SysML internal block Diagrams. EE = electrical energy, E∗ =

arbitrary kind

of energy.

Figure. 3. Black boxmodel of the electric knife exam-

ple. Depicted as SysML Internal Block Diagram. H = human,

HE = human energy, EE = electrical energy, ME = mechan-

ical energy, S = solid. Sridharan and Campbell [8] de􀅭ined

a graph grammar to automate functional decomposition.

To a great extent, the rules de􀅭ined for this grammar were

reused within the following machine learning experiments.

Therefore the rules were re-implemented tomatch the pro-

totype graph-rewriting system used for experimentation.

The main difference with the rules' original formulation is

the use of so-called elementary graph operations:

De􀅮inition 7. Let X=XV ∪XE∪XA be the union of 􀅭i-

nite sets of variables, where XV = {xV |xV ∈VG}and

XE = {xE |xE ∈ EG} are variables over the nodes and

edges of some graph G.XA = {xA|xA∈A}re variables over
the label alphabet A. An elementary graph operation is a

relation f : 〈G,X〉 7→ [〈G′, X ′〉] that maps an input graph

G under consideration of variables X to an output set of

new pairs of graphs and variables [〈G′, X ′〉]. Every pair in

[〈G′, X ′〉] stands for an instance where the operation could

be applied with respect to 〈G,X〉.

If the output set is empty, the operation could not be

applied at all. Further, by writing f : [〈G,X〉] 7→ [〈G′, X ′〉]

we denote that the elementary graph operation is applied

multiple times on a set of input pairs. In consequence,

[〈G′, X1′〉] contains all sets of output pairs taken together

as a union set.

Theorem 1. Let fp : G 7→ [〈G′
n, X

′
n〉] be a relation that

maps an input graph G to an output set of pairs of graphs

and variables [〈G′
n, X

′
n〉] by recursively applying a set of el-

ementary graph operations {fi|i = 1,…, n} in the order of
increasing i:

fp (G)=

{
(fi(〈Gi = G,Xi〉) = [〈G′

i, X
′
i〉] : i = 1

fi([〈Gi−1′ , Xi−1′∪Xi〉]) = [〈G′
i, X

′
i〉] : 1 < i≤n

Further, let [H] be the answer set generated by taking

together each H from direct derivations G
p,o
==⇒ H over all

possible occurrences o of rule p. Then fp is an equivalent

representation of rule p with respect to G if and only if the

set of graphs [G′
n] taken from [〈G′

n, X
′
n〉] equals [H].

Using elementary graph operations for rule de􀅭ini-

tion provides a uni􀅭ied representation for the left-hand side

morphisms, right-hand side morphisms and application

conditions. For the problem at hand, 10 different elemen-

tary graph operations were de􀅭ined:

getNode: 〈G,X⊇[xA]〉 7→ [〈G′ = G,X ′ = X∪xv∪[x
′
A]〉]

shorthand notation: getNode (xV , x(A, 1), x(A, 2),…).

Selects a node xV of G that matches some given labels

[xA]⊆[x
′
A]where [x

′
A]is the complete set of labels for xV .

noOutEdge: 〈G,X⊇xV , xA〉 7→ [〈G′ = G,X ′ = X〉] short-

hand notation: noOutEdge(xV , xA). Requires a selected

node xV to have no outgoing edge with some given label

xA. noInEdge works the same except that it checks for in-

coming edges.

hasLabel: 〈G,X⊇xV , xA〉 7→ [〈G′ = G,X ′ = X〉]; short-

hand notation: noOutEdge(xV , xA). Requires a selected

node xV to have the given label xA.

relatedLabels: 〈G,X⊇{xA,1, xA,2}〉 7→ [〈G′ = G,X ′ =

X〉]; shorthand notation: relatedLabels(xA,1, xA,2. Re-

quires two given labels xA,1 and xA,2 to be taxonomically

ISSN: 2414-4592

DOI: 10.20474/jater-3.4.5

2017 J. R. Eichhoff. F. W. Baumann, D. Roller- In search of missing design 154

related, e.g., by means of the functional basis.

notEqual:

{
〈G,X⊇{xA,1, xA,2}〉 7→ [〈G′ = G,X ′ = X〉]

〈G,X⊇{xV,1, xV,2}〉 7→ [〈G′ = G,X ′ = X〉]

short hand notation: related Labels(xA,1, xA,2), related

Labels(xV,1, xV,2). Requires two given labels xA,1, xA,2 or

two given nodes xV,1, xV,2 to be different, s.t. xA,1≠xA,2 or

xV,1≠xV,2 respectively.

useOutNT: 〈G,X⊇{xA}〉 7→ [〈G′, X ′ = X∪{xV,1, xV,2}〉];
short hand notation: useOutNT (xV,1, xV,2, xA). Selects a

node xV,1 of G that is adjacent to a non-terminal (NT) node

xV,2 via an outgoing edge with the given label xA. G' is a

copy of G where the non-terminal node and the edge are re-

moved. useInNT works the same except that the edge must

directing towards xV,1.

addNode: 〈G,X⊇[xA]〉 7→ [〈G′, X ′ = X∪{xv}〉]; short
hand notation: get Node(xV , xA,1, xA,2,…). Adds a node

xV with the given labels [xA]. The resulting graph is G'.

addEdge: 〈G,X⊇xV,1, xV,2, xA〉 7→ [〈G′, X ′ = X〉]; short

hand notation: addEdge (xV,1, xV,2, xA). Adds an edge of

the given label directing from xV,1 to xV,2. The resulting

graph is G'.

addLabel: 〈G,X⊇{xV , xA}〉 7→ [〈G′, X ′ = X〉]; short hand

notation: addLabel (xV , xA). Adds an additional label xA

to a selected node xV . The resulting graph is G'.

addOutNT: 〈G,X⊇xV,1, xA〉 7→ [〈G′, X ′ = X∪{xV,1}〉];
short hand notation: addOutNT (xV,1, xV,2, xA). Adds a

non-terminal node xV,2 and links it with a selected node

xV,1 via a new edge from xV,1 to xV,2 with the given label

xA. The edge directs towards the non-terminal and the re-

sulting graph is G'. addInNTworks the same except that the

edge will be directing towards xV,11.

In order to further ease the formulation, additional

so-called choice operators were introduced. These op-

erators can be used to form groups of elementary graph

operations denoting alternative left-hand sides for a rule.

This syntactic aid allows formulating slight variations of

a rule combinedly. The operations that can be grouped

are those addressing a rule's left-hand side, i.e. getNode,

noOutEdge/noInEdge, hasLabel, relatedLabels, notEqual,

and useOutNT/useInNT. Rule 17 is a more complex rule

within the mentioned grammar. A graphical representation

of the rule is shown in Figure. 4. Semantically, the rule

provides function B with some required form of energy E*

by converting Electrical Energy (EE) taken from function A

into E* and transmitting it to node B. For instance, imagine

an electro motor that converts EE into mechanical energy

which is then transmitted to some other place within the

product by means of a gear assembly. There are two op-

tional ways in which nodes A and B are selected from the

graph:

1. The primary 􀅭low of A (B) is EE (E*), but there is no out-

going EE-􀅭low (incoming E*-􀅭low) connected to A (B).

2. A (B) is an arbitrary node that is linked to a non-terminal

via an outgoing EE-􀅭low (incoming E*-􀅭low).

The 􀅭irst selection pattern can be regarded as

“push”-strategy where the rule actively searches for un-

derde􀅭ined parts within the function model, whereas in the

latter pattern the rule application is requested (or “pulled”)

by anon-terminal. The formerpattern involves the use of an

application condition to ensure that only nodes are selected

which are not connected to some kind of edge. Another ap-

plication condition of rule 17 is the constraint that for E*

any kind of energy can be used except EE. Formulating the

same rule in terms of elementary graph operations yields:

Choose:

{
1.1

(getNode(xv,1, "EE")

noOutEdge(xv.i, "EE")

1.2
(

useOutNT (xV,1, xV,98, ""EE"")

Choose:

{ 2.1
(getNode(xv,4, xa)

noinEdge(xv,4, xa)

2.2
(useInNT (xV,4, xV,99, xA)

notEqual(xA, "EE")

relatedLabels(xA, "E
∗")

addNode(xv,s"convert", "EE", Xa)

addNode(xv,3"transmit", Xa)

addEdge(xv,1, xv,2, "EE")

addEdge(xv,2, xv,3, XA)

addEdge(xv,3, xv,4, XA)

In the same manner, the rules mentioned in Srid-

haran and Campbell [8] having the identi􀅭iers 3, 4, 5, 6, 17,

20, 24, 25, 26, 27, 29, 33 were formalized. Starting from the

black box shown in Figure. 3 and applying these rules in the

sequence 26, 4, 29, 24, 27, 5, 25, 20, 3, 6, 17, 33 yields 􀅭ive

valid function structures. The variation is due to the differ-

ent possibilities for applying each rule with respect to the

current host graph. Every graph produced throughout the

derivation process is considered a valid function structure,

if it complies the following requirements:

1. There are no non-terminal nodes left.

2. Each “import” function must have an outgoing 􀅭low.

3. Each “export” function must have an incoming 􀅭low.

ISSN: 2414-4592

DOI: 10.20474/jater-3.4.5

155 J. Adv. Tec. Eng. 2017

Fig. 5 . Derivation of one possible functional decomposition for the electric knife example. Depicted as a series of SysML Internal Block

Diagrams. Starting point is the black box shown in Figure. 3. H = human, HE = human energy, EE = electrical energy, ME =

mechanical energy, MR = rotational mechanical energy, MT = translational mechanical energy, S = solid.

Figure 5 shows the derivation process for the function

structure that is also mentioned in Sridharan and Campbell

[15]. Rules 3-6 are making the product an electrically oper-

ated device, which is turned on and off by its (human) user.

Rules 26, 17, 29, 20 and 33 determine how the electrical en-

ergy enables the primary function: by converting electrical

energy tomechanical energy, which is then used for cutting.

Rules 24, 25 and 27 are used for handling the material that

needs to be cut.

After the application of rule sequence 26, 4, 29, 24,

27, 5, 25, 20, 3, 6, 17, 33 follows a post-processing step.

It uses a special “closing-gaps” rule (ID 16) that iteratively

tries to add edges in order to make the graph a valid func-

tion structure.

IV. RELATEDWORK

The literature surveys of [17] and Pappa and Freitas

[18] point out that there has been a continuing interest in

the problems of grammar and rule induction (also called

inference) over the last 30 years. Though various contribu-

tions address the induction of context-free string grammars

there has been little research on learning context-sensitive

graph-grammars. Remarkably the early work of [19] was

one of the few attempts to learn a context-sensitive gram-

mar.

However, the formation of context on the left-hand

sides is very restrictive. It is limited to certain graph tem-

plates (star or chain structures). The induction algorithm

starts with trying to reproduce the 􀅭irst example with a

minimum amount of rules. For that reason rules with right-

hand sides of maximum size are preferred. In the following

iterations the algorithm tries to reuse the current rule set

and only adds further rules if necessary to reproduce the

next example in queue. The induction algorithms of Jeltsch

and Kreowski [20] and [21] start by producing a highly

specialized initial grammar that covers all given training

examples.

Therefore the initial rules' right-hand sides corre-

spond to the training examples. In order to yield a more

general grammar the existing rule set is iteratively decom-

posed towards rules that can be applied multiple times.

Jeltsch and Kreowski [20] decompose rules according to

edge-disjoint coverings in the right-hand sides. The appli-

cability of rules can be further extended by renaming non-

terminals. [21] decompose rules by searching right-hand

sides for subgraphs that suf􀅭ice a given rule template. The

resulting rules are then reverse-applied changing the right-

hand side of the original rule. Beside that the right-hand

side of a rule can be reduced if it is unifyable with the right-

hand side of another rule. Both works focus on hyperedge

replacement systems, where Jeltsch and Kreowski [20] in-

duce a context-free hyperedge grammar and [21] search for

context-sensitive rules. However, the context of the latter is

again strictly limited to prede􀅭ined rule templates.

ISSN: 2414-4592

DOI: 10.20474/jater-3.4.5

2017 J. R. Eichhoff. F. W. Baumann, D. Roller- In search of missing design 156

The Subdue method [22] iteratively adds one rule

at a time. At each iteration it searches for subgraphs that

frequently appear in the training examples. From these

subgraphs one is chosen as the right-hand side of the new

rule. All appearances of the subgraph are then replaced by

a non-terminal, which in turn is used as the left-hand side

of the new rule. After this compression step the next rule is

searched. From the candidate set that rule is chosen which

achieves the best compression ratio. Candidates are gener-

ated by growing subgraphs. The process starts from single

nodes and successively adds a neighboring edge or an edge

and a node.

VEGGIE [23] is a Subdue derivate that adds rudimen-

tary support for context-sensitive rules. Here, context is

identi􀅭ied from overlapping subgraph instances. Given the

part where instances overlap, new non-terminals are in-

troduced that similarly connected. These form the context-

sensitive left-hand side of two new rules. One adds the non-

overlapping part in its right-hand side, the other turns the

non-terminals back to terminals. Though rooted in differ-

ent 􀅭ields, [24] and Costa and Sorescu [25] share the idea of

inducing rules by assessing frequencies of subgraphpairs in

training examples and both induce context-sensitive rules.

AGM[24] builds on association rulemining. Their induction

algorithm starts with counting the instances of all possible

subgraphs and computes their probability of appearance,

called support. All subgraphs suf􀅭icing a certain support

threshold are considered for rule generation. The condi-

tional probability of G2 appearing given that G1 is present

in the graph then determines the con􀅭idence that there is a

rule with left-hand side G1 and right-hand side G2. Costa

and Sorescu [25] also count frequencies of co-occuring sub-

graphs. However, the subgraphs which form a rule are fur-

ther required to stand in a special core-interface-relation.

A core subgraph consists of all nodes and edges that lie at

a certain distance to some seed node. An interface sub-

graph in turn consists of nodes and edges that shield the

core from the rest of the graph. Now a core can be replaced

with another core if their corresponding interfaces match.

Hence, the left-hand side and right-hand side both consist

of core-interface-pairs with matching interfaces. None of

these approaches to learning context-sensitive graph gram-

mars is readily applicable under thementioned restrictions

as they are bound to limitations:

1. Left-hand sides were limited to rule templates [19], [21]

or left-hand sides and right-hand sides were limited to sin-

gle components [24], [25]. Hence, existing approaches are

not capable of accepting multiple isolated subgraphs in

their left-hand sides (e.g., to link these components with

new edges).

2. All grammars have been induced from scratch. Com-

pleting a set of given (unknown) rules has not been con-

sidered. This complicates rule induction as existing rules

may produce or require nodes, edges, or application con-

ditions that cannot be inferred from the training examples.

Consider two existing rules for instance, one producing a

non-terminal the other consuming a different non-terminal.

The rule to be learned may be required to “bridge the gap”

between both rules' application by transforming one non-

terminal into the other. However, this information cannot

be directly read from the example graphs as they do not

contain any non-terminals. In order to address these limi-

tations machine learning can be conceptualized as a search

over a space of possible hypotheses [26]. In this case hy-

potheses are candidates for rule p and the search space is

de􀅭ined by the vocabulary and syntax used for formulating

rules. The goal of the learning algorithm is then to search

for rule candidates that best describe the training data.

A. Problem Statment

Goal state

Let (P̂ , G0) be a graph-rewriting system that pro-

duces language Ĥ and let [Ĥ]⊆Ĥ be a set of target graphs

within that language, which is obtained by derivation over

rule sequence S = (p1, p2,…, pn). In terms of our domain,

G0 is, for instance, the black box model and [Ĥ] is the set of

desired function structures.

Given State: Let (P̌ , G0) be a graph-rewriting system that

produces language Ȟ , where P̌⊂P̂and [Ȟ]∩Ĥ = θ. Rule

set P̂ is unknown. Further, all rules of P̌are con􀅭idential,

i.e., for every p∈P̌ we are not in knowledge of the graphs

{L,K,R} and application condition acL used for de􀅭ining

p = 〈acL, L
�←− R

�−→ 〉. However, we are allowed to query

derivation results, i.e., produced graphs, from (P̌ , G0).

Learning Problem: In order to reach the goal state from

the given state, additional rules P need to be added to yield

an enhanced graph-rewriting system (P̌∪P,G0) which is

able to produce a language H such that [Ĥ] ⊆H. Hence, the

learning problem is: What is a proper P for (P̌∪P,G0)?

A. Decidability and Restrictions

The above problem is equal to determining the

reachability for each H∈[Ĥ]given P̌∪Pas rule set. Follow-

ISSN: 2414-4592

DOI: 10.20474/jater-3.4.5

157 J. Adv. Tec. Eng. 2017

ing [27] we de􀅭ine the reachability problem:

De􀅮inition 8. Given a 􀅭inite set of rules P̌∪pP , an initial

graph G0 and a 􀅭inal graph H, the reachability problem is

de􀅭ined as follows: does G0
�−→P̌∪P)H hold? If we can

con􀅭irm that everyH∈[Ĥ]is reachable fromG0 using P̌∪P

then P is a proper solution for our learning problem. For

general graph-rewriting the reachability problem is unde-

cidable [28].

However, in the case of 􀅭inite-state graph-rewriting

systems the reachability problem is decidable. Here, the

set of possible graphs which can be derived from G0 up to

isomorphism is 􀅭inite. In theory, H can be tested for iso-

morphism with every graph within that set to determine

reachability.

Nonetheless, computing the complete set of deriv-

able graphs can be become an issue of complexity. Reach-

ability is also decidable for in􀅭inite-state graph-rewriting

systems with special restrictions. At this point the inter-

ested reader is referred to [27], who investigated the decid-

ability of the reachability problem with respect to different

types of graph-rewriting systems. In this paper we impose

the following restriction on the learning problem:

Restriction 1: (P̌∪P,G0) is a 􀅭inite-state graph-rewriting

system.

De􀅭ining a 􀅭inite-state graph-rewriting system is in

itself an interesting problem, which is subject to current

research. Recently Bisztray and Heckel [29] proposed an

approach that combines previous approaches instead of us-

ing a single termination criterion. This is supposed to grant

greater 􀅭lexibility in the de􀅭inition of a graph rewriting sys-

tem. A review of previous approaches can also be found in

Bisztray and Heckel [29]. However, in the following we will

restrict the learning problem to a 􀅭ixed application order

to yield a 􀅭inite-state graph-rewriting system, speci􀅭ically:

Restriction 2: We suppose the sequence S = (p1, p2,…, pn)

of the goal state to be given, such that the application order

of rules is known to the learner, but the de􀅭inition of rules

remains unknown. The rules to be learned P are one or

more rules within that sequence. So far we are aware that

the reachability problem is decidable for a certain 􀅭inite set

of rules P ̌∪P.

However, P is not 􀅭ixed in context of the learning

problem: Each rule p ∈ p is chosen from a possibly in􀅭inite

set of possible rule formulations P. Hence, the decidability

of the learning problem is also dependent on characteris-

tics of P.

Restriction 3: In order tomaintain decidability of the learn-

ing problem, we require P to be 􀅭inite. We now show how P

is restricted to a 􀅭inite set with respect to our domain spe-

ci􀅭ic language for functional decomposition:

1. Every left-hand side operation can only refer to elements

that are part of a graphGi∈[Gi].

2. Every right-hand side operation that produces changes

which cannot be undone by a later operation, can only refer

to elements that are part of Ĥk but are not part ofGi∈[Gi].

Such persistent elements are termed monotonic elements.

With respect to our functional design grammar all elements

are monotonic except non-terminals and edges that link

non-terminals to other nodes.

3. Non-monotonic elements, i.e., elements that are added

temporarily andmaybe removed in derivation, are not com-

pletely random.

Within the functional design grammarnon-terminals

function as placeholders, which are later replaced by edges.

Hence, the set of possible non-terminals to be added is lim-

ited to the edges of Ĥk that are not part ofGi∈[Gi].

VI. OPTIMIZATION-BASED APPROACH TO RULE INDUCTION

Given the above restrictions the learning problem

can be formulated in terms of a combinatorial optimization

problem over the language of possible rule sets. Therefore,

let P+ be the positive closure of P, which denotes the space

of all possible rule sets to be considered, i.e.,P∈P+ Further,

let d ∼= (∙, ∙) be a similarity distance function that measures

the difference of two sets of graphs, then the optimization

problem can then be stated as follows:

P∗ = argmin
P∈P+ d ∼= ([H], [Ĥ])

[H]⊆Hwhere(P̌∪P,G0) 7→ H

In other words, we are searching a set of rules P ∗

that is, when added to the existing graph-rewriting system

(P̌ , G0), able to produce a set of graphs [H] that show the

highest similarity with the target graphs [Ĥ]. In the op-

timal case reachability is established when ∀Ĥ∈[Ĥ](H
∼=

Ĥ|H∈[H]). This optimization problem is now subject to

various re-formulations in order to yield a problem that

can be readily implemented as computer program.

A. Learning Multiple Rules

First, let us consider the case where a single rule

pi needs to be added, i.e., P
∗ = {pi}: As we are aware of the

sequence of rule application S = (p1, p2,…, pn), it is known

at what point in derivation i∈(1, 2,…, n) the new rule pi is

supposed to be applied. Thus, we can pre-compute the set

ISSN: 2414-4592

DOI: 10.20474/jater-3.4.5

2017 J. R. Eichhoff. F. W. Baumann, D. Roller- In search of missing design 158

of potential host graphs [Gi]on which pi is applied on by

deriving over the subsequence from p1 up to pi−1:

P∗ = argmin
Pi∈P d ∼= ([H], [Ĥ])

[H]⊆H=

{
(P̌U{pi}, G0) 7→ H : i = 1

(P̌U{pi}, [Gi]) 7→ H : i > 0

From this a scheme for learning multiple rules can

be established: Case 1 - Subsequent rules: Now, sup-

pose two or more rules of S are missing and these rules

are directly following in sequence to each other, e.g.,

(pi−1, pi, pi+1)should be learned. This case is equal to learn-

ing a single rule that replaces the complete subsequence.

The resulting rule is a composition of all rules in the subse-

quence, a so-called E-concurrent or parallel rule [15].

Case 2 - Two separate rules: Suppose that two rules

of S are missing, and these rules are not directly follow-

ing in sequence to each other, e.g., {pi−1, pi+1} should be

learned and pi is an existing rule that should be reused.

Solving the above optimization problem would lead to a

composition of rules (pi−1, pi, pi+1) as discussedwithin the

􀅭irst case. However, pi is not supposed to be replaced by

the learned rule. Yet, by simply adding the second rule to

the optimization problem's search space, we are able to de-

termine both rules in parallel while keeping any existing

rules in between. The preparatory selection of host graphs

for the second rule must select graphs from the preceding

derivation results, e.g., the answer set resulting from the

application of (p1, p2,…, pi−1, pi). This must be performed

repeatedly, as the 􀅭irst rule is allowed to change as well.

Case 3 - Multi-rule-learning: Suppose there are more than

two rules of Smissing, e.g., {pi−2, pi, pi+2} aremissingwhile

{pi−1, pi+1} are existing rules. Here, we repeatedly apply
the processes of cases 1 and 2: First, pi−2 and a combined

rule for (pi, pi+1, pi+2) are learned. With a second invo-

cation of the learner, the latter is re􀅭ined by learning two

separate rules for pi and pi+2. Repeating this process lends

a scheme to iteratively learn multiple missing rules under

consideration of existing rules.

B. Learning Process

Let there be m target graphs Hk∈[Ĥ] where

k∈(1, 2,…,m). We obtain a simpli􀅭ied version of the above

problem by considering one target graph at a time.

P ∗
i,k = argmin

Pi,k∈P d ∼= ([H], [Ĥ])

Hk∈H=

{
(P̌U{pi}, G0) 7→ H : i = 1

(P̌U{pi}, [Gi]) 7→ H : i > 0

In the worst case this simpli􀅭ication leads to the gen-

eration of a different rule for every Ĥk , whereas in the best

case the rule learned for one target graph is also capable of

deriving the other target graphs as well. Using this we yield

an algorithm for solving the learning problem.

C. Reachability Learner

Input: The graph-rewriting system (P̌ , G0) that shall

be enhanced; the application sequence of rules S; the posi-

tion i of the rule that is to be learned; and the set of target

graphs [H ̂] that shall be reproduced.

Fig. 6 . Suggested genetic programming implementation

Output: A set of rules P ∗capable of reproducing [H ̂]

when used in (P̌∪P ∗, G0)Let Let K = {k|Ĥk∈[Ĥ]}While

k∈K do Find a suitable rule p∗i,kforHk :

P ∗
i,k = argmin

Pi,k∈P d ∼= (Hk, Ĥk)

Hk∈H=

{
(P̌U{pi}, G0) 7→ H : i = 1

(P̌U{pi}, [Gi]) 7→ H : i > 0

Add p∗i,ktoP
∗, and remove k from K End while.

VII. GENETIC PROGRAMMING IMPLEMENTATION

Genetic Programming [30] is a well known meta-

heuristic that builds on evolutionary principles for solving

combinatorial optimization problems. It has proven suit-

able for large search spaces and is robust against local op-

ISSN: 2414-4592

DOI: 10.20474/jater-3.4.5

159 J. Adv. Tec. Eng. 2017

tima. In comparison to traditional genetic algorithms it

uses a variable-sized tree representation of individuals. At

this point the interested reader is referred to Wong and

Leung [31] for a thorough introduction to GP and evolu-

tionary search heuristics in general. The method's key con-

cepts are its tree representation of possible solutions and

the sampling of solutions, which is based on evolutionary

principles. Following Eichhoff and Roller [32] we use GP to

implement the reachability learner. Figure 6 summarizes

all aspects of the genetic programming process.

A. Representation of Rules

The GP-tree is used to store two kinds of informa-

tion:

1. On which host graph will the rule be applied on?

2. What elementary operations will be applied on the se-

lected host graph?

Fig. 7 . Example GP-tree of a rule candidate for rule 29 including

references to host and target graphs. Host and target

graphs are depicted as SysML Internal Block Diagrams. ME

= mechanical energy, S = solid

The 􀅭irst question is addressed by the GP-Tree's root

node. Using an integer number that is associated with the

root node, a host graph for applying the rule candidate is

chosen from a set of possible host graphs. Since the order of

rule applications S = (p1, p2,…, pi−1, pi, pi+1,…, pn−1, pn)

is known a priori, the set of possible host graphs is a subset

of Gi−1, which is obtained by derivation G0 ⇒ S1, Gi−1

over subsequence S1 = (p1, p2,…, pi−1). However, not all

graphs in Gi−1 are feasible host graphs for deriving tar-

get graphs [H]. IfGi−1∈[Gi−1]contains nodes or edges that

cannot be removed in the following derivation, i.e., over

subsequence S2 = (pi, pi+1,…, pn−1, pn), and H∈[H]does

not contain these nodes or edges, then H is not reachable

from Gi−1. Hence, the GP-trees root node is only allowed

to choose from [Ĝi−1], which is a 􀅭iltered subset of possible

host graphswhere infeasible host graphs are excluded. The

criteria for exclusion are determined by the language used

for formulating rules. In our sample case function nodes

and 􀅭low edges cannot be deleted from a graph once added

(they aremonotonic). Only non-terminal nodes are allowed

to be removed. After having selected a Ĝi−1, Gi is initial-

ized as a copy of Ĝi−1. The remaining nodes of the GP-tree

are then used to answer the second question. Each of these

GP-nodes represents a single elementary operation of the

kinds addNode, addEdge, addNT and useNT. Every such

node has a single integer number associated, which is used

to determine what node/edge is added/removed from Gi.

This is done by selecting nodes and edges either from the

selected host graph Ĝi−1 or from the target graph H.

addNode: For all terminal nodes in H that are not

yet present in Gi, add the one speci􀅭ied by the index node

to Gi. The operation is not applicable if the set of addable

nodes is empty. addEdge: For all edges in H that are not

yet present inGi, add the one speci􀅭ied by th index node to

Gi. Incident nodes that are not present in Giare added as

well. The operation is not applicable if the set of addable

edges is empty. addNT: For all edges in H that are not yet

present inGi, butwhere exactly one incident terminal node

already exists in Gi, select the edge speci􀅭ied by the index

node. Add a NT and the selected edge toGi, where one end

of the edge marks the existing terminal node, and the other

is the newly addedNT. The operation is not applicable if the

set of edges to be considered is empty.

useNT: For all NTs in Gi, remove the one speci􀅭ied

by the index node. The operation is not applicable if the

set of NTs is empty. Now, in order to obtain the 􀅭inal Gi,

i.e., the graph that results from applying the candidate rule,

the initial copy of Gi−1 is propagated through the GP-tree,

where at each node the corresponding elementary opera-

tion is applied. Figure 7 shows an example GP-tree.Now,

in order to obtain the 􀅭inal Gi, i.e., the graph that results

from applying the candidate rule, the initial copy of Gi−1

is propagated through the GP-tree, where at each node the

corresponding elementary operation is applied. Figure 7

shows an example GP-tree.

B. Evolutionary Sampling of Rule Candidates

In GP a sample of solutions is called population. With

each iteration of the GP a new generation of this population

is produced by means of selection, recombination and mu-

tation operators.

ISSN: 2414-4592

DOI: 10.20474/jater-3.4.5

2017 J. R. Eichhoff. F. W. Baumann, D. Roller- In search of missing design 160

Selection determineswhich solutions, or individuals,

of the current generation should be used to determine the

next generation. This choice is basedon the valueof the goal

function an individual achieves. In the context of GPwe also

speak of the 􀅭itness of an individual referring the to idea of

“survival of the 􀅭ittest”. Mutation and crossover operators

are then applied on the 􀅭ittest solutions, a process called

breeding: Mutation randomly modi􀅭ies parts of an existing

solution to form new individuals for the next generation.

Recombination, or chromosome crossover, randomly joins

parts of two solutions (the parents) to create a new individ-

ual.

C. Fitness Evaluation

The selection of individuals is based on a single 􀅭it-

ness evaluation criterion, i.e., a measure of similarity be-

tween derived graphs and target graphs. It ranges in the

interval [0,1] where 0 denotes the highest similarity. The

implementation of this measure is a crucial aspect for the

learner's ef􀅭iciency. A stepwise approach to measure the

similarity of graphs has been implemented. As long as

the minimal distance 0 has not been reached, the follow-

ing steps are repeated for every graph G derived from Gi:

First, we check if G is isomorphic to H for the reachability

approach, or if H contains G (subgraph isomorphism) for

the coverability approach, respectively. If this is true, the

state of highest similarity 0 is reached. Otherwise, G and H

are compared with respect to their label frequency tables.

In case of different frequency tables, their Quadratic-Chi

distance is used to give a similarity value ranging within

[0.75,1]. If the frequency tables are identical, a graph sim-

ilarity algorithm is used to compare both graphs with re-

spect to their labels and their topology. Here, we used the

algorithm of Nikolić [33, 34, 35] to produce a value within

[0.5,0.75].

Graph Similarity

Input: Gi resulting from GP-tree-propagation; remaining

sub-sequence S2.

Output: Value of the minimum distance between target

graph H and the set of graphs resulting from derivation Ini-

tialize similarity value a=1 Derive remaining subsequence

S2 starting fromGi and gather all produced graphs [G]

ForG∈[G]do

IfH ∼= Gdo

Return 0

Else Compute frequency tables h(G) and h(H) over the

graphs' node and edge labels

Let b = d2(h(G), h(H)) be the Quadratic-Chi distance of

both frequency tables If b≠0

a = min(a, 0.75 + b
4)

Else

Let c be the distance value resulting from applying

the graph similarity algorithm of Nikolić [33] on G and H

a = min(a, 0.5 + c
4)

End if

End if

Return a

End while

D. GP-Tree to Rule Conversion

In the follow-up to GP, the best found individual

is converted from GP-tree representation to a production

rule. The conversion of GP-tree nodes to elementary oper-

ations is straight forward: Any node of the GP-tree (except

the root) either refers to elements of host graph Gi−1, el-

ements of target graph H, or elements of both graphs. In

order to use elements of Gi−1, e.g., to get a reference on

existing nodes or to remove non-terminals, corresponding

left-hand side operations are added. Conversely, if a GP-

node refers to elements of H, any corresponding right-hand

side operation is added.

E.Multi-Rule-Learning

The implementation of the multi-rule-learning sce-

nario as described in the problem statement requires a few

adaptions to the process: First, with each invocation of the

GP-learner two rules are learned in parallel. This corre-

sponds to case 2 of learning multiple rules as described

in the problem speci􀅭ication. Speci􀅭ically the learner de-

termines de􀅭initions for rules pi and pj of sequence S =

(pi, pi+1, pi+2,…, pj−1, pj), where rules (pi+1, pi+2,…, pj−1)

are existing rules. Therefore two GP-trees of thementioned

kind are evolved in parallel, one for pi and one for pj . Fur-

ther, if the sequence of existing rules (pi+1, pi+2,…, pj−1) is

unknown, an additional, simple GP-tree is added to select

what existing rules are applied and in what sequence. Sec-

ond, after a valid solution is found being capable to reach

the target graph, the second induced rule pj is re􀅭ined with

another invocation of the GP-learner. This follows from

case 3 of learning multiple rules. However, instead of using

the original source graph, at this time the result from de-

riving over (pi, pi+1, pi+2,…, pj−1, pj), i.e., the host graph

ISSN: 2414-4592

DOI: 10.20474/jater-3.4.5

161 J. Adv. Tec. Eng. 2017

of pj , is used as new source graph. If a valid solution can be

found for this new induction problem as well, then the ini-

tial result for pj is discarded and the two new induced rules

together with the next sequence of existing rules is used in

replace. The process can be stoppedwhen nomore existing

rules can be reused. Figure 8 illustrates this process. Third,

two extra optimization goal are added. One of these goals

aims at maximizing the applicability of existing rules, such

that one candidate solution is preferable over the other if

it enables more existing rules to be applied. However, this

applicability score is governed by the similarity with the

target graph, which yields the following formula:

(1− 1
|S|)∙d

∼= (H, Ĥ)

Fig. 8 . Differences in the generality of rules and the effect of cannibalization exempli􀅭ied with respect to varying de􀅭initions of rule 3.

Application of original, general variant (3a) is depicted on the left. Applications of two learned variants (3b, 3c) are shown on the

right. The latter are more speci􀅭ic and need to be used in combination to derive all target graphs. Modi􀅭ied graphs are depicted as

SysML Internal Block Diagrams. H = human, HE = human energy.

Where |S|≥1 denotes the number of rules of sequence S

which were actually applicable (note that at least the 􀅭irst

rule is applicable, since it is being induced). The third

optimization goal is a parsimony score. It prefers candi-

date solutions with smaller GP-trees over solutions with

larger ones. Here, the three GP-trees are not treated equally.

Speci􀅭ically, the GP-tree de􀅭ining the 􀅭irst rule pi is affected

from this score, since we are interested in inducing min-

imal rules while reusing existing rules whenever possible

(see cannibalization effect in results section). Nonetheless,

overly large rule sequences are also penalized by this score

in order to avoid unnecessary rule applications. In compar-

ison with pi, however, the parsimony pressure on the rule

sequence is relatively small (factor 1:100). The second in-

duced rule pj is not subject of the parsimony score, as this

rule will be re􀅭ined in the next iteration of the GP-learner.

VIII. SINGLE-RULE-LEARNING EXPERIMENTS

The graph grammar of Sridharan and Campbell [8]

was used as benchmark for an initial batch of computer (In-

tel(R) Core(TM) i7-5930k CPU @ 3.50 GHz, 64 GB RAM @

2133 MHz, Windows 10) experiments. In each experiment

one rule of this grammar was excluded, and the learners

were given the task to 􀅭ind de􀅭initions for the missing rule

such that a set of 􀅭ive given function structures can be de-

rived from the black box model. Every experiment was

repeated 30 times. The mean number of generations and

elementary op-erations computed within each run serve

as measure for the computational effort. To quantify the

similarity with the original rule formulation, the left-hand

side occur-rences and right-hand side co-occurrences were

com-pared by means of the same graph-similarity algo-

rithm described earlier. Next, we discuss the quality of

learning results, whereas Table 1 provides a summary of

the computational efforts.

A. Generality of Rules

We quantify the generality of a rule by the number

of target function structures the rewrite system is capable

to derive using the rule. With respect to the present exper-

iments a rule shows maximum generality if it supports the

derivation of all 􀅭ive target function structures. The orig-

inal rules always have this property as they were used to

generate the set of target function structures. However,

rules found by the GP learners differed in terms of general-

ity. Rule 25, for instance, is supposed to attach a guide-M∗

node in front of an export-M∗ node, whereM∗ is some ar-

bitrary kind of material. This applies to both, the export-H

ISSN: 2414-4592

DOI: 10.20474/jater-3.4.5

2017 J. R. Eichhoff. F. W. Baumann, D. Roller- In search of missing design 162

and export-S nodes. In the original formulation a label-

variable in combination with a relatedLabels operation is

used to realize this behavior. The GP-learner, in contrast,

identi􀅭ies two speci􀅭ic rules: one for the export-H case and

the other for export-S.

B. Cannibalization

Itmay happen that the learner discovers a rulewhich

ful􀅭ills its intended purpose but additionally incorporates

elements that are meant to be added/removed by another

rule. Consider rule 3 for example (see Figure. 9): The task

of rule 3 is to add an edge from import-H to import-HE and

to ensure that there will be a second outgoing H-􀅭low from

import-H. In the original formulation this is done by adding

an outgoing NT to import-H signalizing following rules to

add the edge. In most cases this rule de􀅭inition was learned

(see rule 3a in Figure. 9). An alternative strategy found by

the GP learner was to include the latter task as well. Here,

two different rule formulations are needed (see rules 3b

and 3c in Figure. 9): One rule establishes an H 􀅭low from

import-H to export-H. It can be used to derive three out of

the 􀅭ive function structures. The remaining two function

structures have a guide-H put right in front of the export-H.

Hence, a second rule is learned that links import H with

guide H.

C. Swapping of Duties

We further observed an effect we term the swapping

of duties. The effect appears if there is a rule succeeding

the rule to be learned and this existing rule is able to per-

form some of the operations which are actually supposed

to be part of the learned rule. In this situation the existing

rule acts as partial substitute. However, since we consider

the rule sequence to be 􀅭ixed, the original task of this sub-

stituting rule will not be accomplished anymore. This is

where the learner sets in and determines a new rule which

compensates for the original rule's missed duties. This ef-

fect is prevalent for rule 5 for instance. The purpose of

rule 5 is to add transmit-EE and actuate-EE nodes. Further,

in its original formulation, it is supposed establish a di-

rected path from import-EE via transmit-EE to actuate-EE.

From all learned de􀅭initions of rule 5, this was the frequent

variant. Yet, several other variants were learned that dif-

fer with respect to the added edges. Since the close gaps

rule is capable of adding the required edges as well, rule

5 just has to add any two edges which are needed in the

target graph. Speci􀅭ically, the found rules added edges be-

tween secure-S/separate-S, separate-S/export-S, position-

S/secure-S, position-S/export-S, transmit-HE/export-HE.

Here the duties are swapped with the very general close-

gaps rule: While the learned rule accounts for some of the

links that need to be established to yield the 􀅭inal function

structure, the close-gaps rule takes care of completing the

mentioned EE chain at the end of derivation.

TABLE 1

RESULTS OF LEAVE-ONE-RULE-OUT EXPERIMENTS

Generations Elementary Operations Similarity with Original Rule

Rule ID Mean Std.Dev. Mean Std.Dev Mean Std.Dev

256 Rule Candidates per Generation

3 3.18 2.53 21784.3 12136.57 0.8 0.14

4 2.57 1.57 39349.03 30926.80 0.53 0.03

5 4.48 2.04 82132.41 42074.77 0.5 0.34

24 1.5 0.77 31551.52 16787.68 0.8 0.23

26 26.97 26.38 174748.13 88550.17 1 0

27 1.44 0.66 32934.56 14705.61 0.81 0.23

29 5.45 5.71 90898.52 58852.95 0.98 0.09

32 Rule Candidates per Generation

6 6.26 6.33 5047.49 3470.81 0.97 0.11

17 4.13 2.41 1505.99 798.26 0.41 0.16

20 4.21 3.56 4553.37 2544.57 0.67 0.4

25 5.03 4.69 5165.8 3118.38 0.75 0.27

33 1.43 0.88 525.45 195.99 0.3 0.27

n=30

ISSN: 2414-4592

DOI: 10.20474/jater-3.4.5

163 J. Adv. Tec. Eng. 2017

IX. MULTI-RULE-LEARNING EXPERIMENTS

We are now going to switch to a design case from

conceptual spacecraft design to illustrate the methods ca-

pabilities in a more complex and practical setting. Schmidt

and Rudolph [12] used the graph-rewriting-based design

compiler 43 [7] to create a parametric design model for

spacecraft propulsion systems. Here, graph-rewriting rules

are used to incrementally build up a con􀅭igurational de-

sign starting from an initial requirements de􀅭inition. With

a set of 62 rules in total, the graph-rewriting system is ca-

pable of deriving various variants of cold-gas (CGS), mono-

propellant (MONO) and bi-propellant (BI) type propulsion

systems.

Example 􀅭low schematics of such systems are shown

in Figure. 10. The graph-rewriting system starts from a

graph thats is used to represent the mission re-quirements

for the propulsion system. It then follows the principles

of functional decomposition to identify suitable component

con􀅭igurations that 􀅭it these requirements. This graph-

rewriting system has been used as gold standard for rule

induction experimentswith the pro-posedmethods. There-

fore we assume the situation of an engineer who has al-

ready prepared a graph-rewriting system for deriving cold-

gas propulsion systems, and now wants to extend this sys-

tem to derive (more com-plex) mono-propellant and bi-

propellant systems as well. This situation is re􀅭lected by

the following rule induction problem. There is an existing

graph-rewriting systems consisting exactly of those rules

which are necessary for deriving cold-gas propulsion sys-

tems.

Example design graphs for mono-propellant and bi-

propellant propulsion system are available, however, the

current rule set is insuf􀅭icient for deriving these kinds of

propulsion systems. The rule induction problem is now to

extend the current rule set, such that the derivation of the

mono-propellant and bi-propellant examples becomes pos-

sible. The source graph for these new derivations consists

of a single SC node representing the space craft. The cold-

gas system is the result of the derivation process illustrated

by Figures. 11 and 12. What follows is a description of the

rules applied therein: CG1 Create Fuel Area: starts trans-

forming the source graph by adding a node, which repre-

sents the installation space used for the propulsion system

(FUELA).

CG2CreateTasks: adds the taskswhich should be ful-

􀅭illed by the components installed in the installation space

(STORE, MANAGE, THRUST) and imposes an order on the

sequence for executing these tasks.

Fig. 9 . Flow schematics of a cold-gas (left), mono propellant

(center) and bi propellant (right) type propulsion system

Fig. 10 . Derivation of a cold-gas propulsion system. Edge labels

omitted

CG3 Create Thruster Clusters for Engines: is then used

to further specify how THRUST is generated. In this case,

the rule is applied once in order to generate one thruster

cluster (THRSTRCL). An additional link to the engine node

(ENG) is drawn establishing traceabilitywith the associated

delta-v requirement (DVREQ). CG4 Create Storage Area: as-

sociates the task of storing fuel with a corresponding func-

tion, i.e., the provision of a storage area (STOA). CG5 Cre-

ate Storage Area Functions: continues func-tional decom-

position by adding and connecting functions 􀅭ill/drain fuel

(FILLDRN), pressure measurement (PRSRMSR), isolation

(ISO) and 􀅭iltration (FLTRTN). It connects these functions

with directed edges representing the direction of fuel 􀅭low

within the system.

ISSN: 2414-4592

DOI: 10.20474/jater-3.4.5

2017 J. R. Eichhoff. F. W. Baumann, D. Roller- In search of missing design 164

Fig. 11 . Derivation of a cold-gas propulsion system (continued).

Edge labels omitted

CG6 Create Limit Pressure: attaches an additional func-

tion to limit pressure (LIMPRSR) after 􀅭iltration. CG7 Con-

nect Thruster Clusters to Management: selects the yet un-

connected ends of the fuel 􀅭low and establishes the missing

link.

In this case, the limit pressure function and the sin-

gle thruster cluster are recognized as ends of the fuel path

which are to be connected. CG8 Remove Non-Terminals:

deletes the now obsolete non-terminals (?), which were

used for denoting the ends of the 􀅭low path. In a 􀅭inal step,

the generated topology of sub-functions is directly trans-

formed into a component con􀅭iguration. A set of additional

rules is responsible for this transformation and chooses a

realizing component for each sub-function. In the case of

the cold-gas propulsion system (see Figure. 10 left) the fol-

lowing function-to-component assignment is used: ISO ↦

pyro valve; FILLDRN ↦ 􀅭ill/drain valve; PRSRMSR ↦ pres-

sure transducer; FLTRTN ↦ 􀅭ilter; LIMPRSR ↦ regulator;

THRSTRCL ↦ an assembly of thrusters. However, the lat-

ter component assignment step was not part of the experi-

ments conducted for the present paper. The rule induction

tasks were limited to the preceding functional decomposi-

tion part, such that the learner had to extend the rule set

CG1, CG2, ... CG8 with additional rules, which make it possi-

ble to reach the target graphs shown in Figure. 13 and Fig-

ure. 15.

Fig. 12 . Target graph of the mono-propellant propulsion system.

Edge labels omitted

A. Extending Rule Set to DeriveMono-Propellant Systems

In the 􀅭irst experiment, the goal was to determine

a graph-rewriting system that is capable of deriving the

mono-propellant propulsion system represented by the

graph shown in Figure. 13. This target graph had been

generated using rules CG1, CG2, CG4, CG5, CG7 and CG8

of the cold-gas derivation together with additional rules

which are speci􀅭ically used for mono-propellant type sys-

tems. The rule sequence used for derivation is (CG1, CG2,

MONO1, MONO2 (×4), CG4, CG5, MONO3, CG7 (×4), CG8).

Given the target graph and rules CG1, CG2, ... CG8, the algo-

rithm for learningmissing ruleswithout knowing the actual

rule sequence has been applied.

Speci􀅭ically, the algorithm was given the limit to use

at maximum two iterations of the GP procedure to induce

suitablemissing rules. Furthermore, GPwas parameterized

to use a population of 256 individuals and the maximum

number of generations was set to 1000. The aggregated

results over 30 repetitions of this ex-periment are shown in

table 2. Thus, the procedure GP has been invoked 60 times

in total. In 11 cases GP exceeded the maximum number

of generations and did not come up with a valid solution.

However, all of these cases occurred with the second GP

iteration, where the 􀅭irst iteration already came up with a

solution. Due to the randomization operations which are

used by GP, a high variance in the running times and the

number of reused existing rules can be observed. Taking

ISSN: 2414-4592

DOI: 10.20474/jater-3.4.5

165 J. Adv. Tec. Eng. 2017

both GP iterations together and computing the mean over

30 repetitions, one rule induction run required 661 GP

generations, 8.2M direct derivations and took 35 minutes.

The mean number of existing rules reused is 4. Figure 14

depicts the distribution of reused rules. The largest set of

reused rules is CG1, CG2, CG4, CG5, CG8. This is also the

most frequently appearing induction result (30% of the

experiment runs). What follows is an illustration of one

example from this group of results: The derivation starts

from the source graph, which consist of a single SC node

representing the space craft that is to be equipped with a

propulsion system. The 􀅭irst induced rule is applied on this

source graph adding and connecting the mono-propellant

propulsion system (MONO).

TABLE 2

RESULTS OF MULTI-RULE-LEARN EXPERIMENT FOR MONO-PROPELLANT DESIGN CASE

Generations Duration (s) Elementary Operations Reused Rules

Iteration Mean Std.Dev. Mean Std.Dev. Mean Std.Dev Mean Std.Dev

1st 235.70 126.10 67.11 37.58 881,039.80 612,292.21 2.73 1.39

2nd 425.20 446.58 2,021.71 3,026.38 7,320,093.53 8,708,223.69 0.87 1.01

Both 660.90 494.34 2,088.82 3,047.99 8,201,133.33 8,962,664.10 3.60 1.33

n=30

Fig. 13 . Frequencies of reused rule combinations for

mono-propellant design case (n=30)

On the resulting graph the existing rules 1, 2 and

5 are reused to add the fuel area node (FUELA), to do the

initial functional decomposition into tasks STORE, MAN-

AGE, THRUST, and to add the storage area (STOA) function

respectively. After these steps, the next induced rule is ap-

plied:

getNode(xV,1, "SC")

addNode(xV,2, "MONO")

addEdge(xV,1, xV,2, "PROPSY S")

getNode(xV,1, "MANAGE")

getNode(xV,2, "THRUST ")

addNode(xV,3, "ISO")

addOutNT (xV,1, xV,98, "FUE")

addInNT (xV,3, xV,99, "NXTFUE")

addNode(xV,4, "THRSTRCL")

addNode(xV,5, "ISO")

addEdge(xV,1, xV,5, "FUE")

addEdge(x(V, 2), x(V, 4), ""FUE")

addEdge(xV,1, xV,3, "FUE")

addNode(xV,6, "THRSTRCL")

addEdge(xV,3, xV,6, "NXTFUE")

Then, existing rule 6 is applied to add the common

storage area functions (FILLDRN, PRSRMSR, ISO, FLTRTN),

and rule 50 removes the LASTFUE non-terminal which was

added by rule 6. All remaining elements to complete the

target graph (cf. Figure. 13) are added by the last induced

rule:

useOutNT (xV,1, xV,98, "FUE")

getNode(xV,2, "FLTRTN")

getNode(xV,3, "ISO")

getNode(xV,4, "MONO")

getNode(xV,4, "ISO")

getNode(xV,6, "SC")

getNode(xV,7, "THRUST ")

getNode(xV,8, "THRSTRCL)

getNode(xV,9, "STOA")

useInNT (xV,3, xV,99, "NXTFUE")

getNode(xV,10, "THRSTRCL")

addNode(xV,11, "ISO")

addEdge(xV,1, xV,11, "FUE")

ISSN: 2414-4592

DOI: 10.20474/jater-3.4.5

2017 J. R. Eichhoff. F. W. Baumann, D. Roller- In search of missing design 166

addEdge(xV,2, xV,11, "NXTFUE")

addNode(xV,12, "THRSTRCL")

addNode(xV,13, "ISO")

addEdge(xV,2, xV,3, "NXTFUE")

addEdge(xV,1, xV,13, "FUE")

addEdge(xV,2, xV,13, "NXTFUE")

addNode(x,V, 14"GAS")

addEdge(xV,4, xV,14, "PRSRNT ")

addNode(xV,15, "DV REQ")

addEdge(xV,2, xV,5, "NXTFUE")

addEdge(xV,6, xV,15, "START ")

addNode(xV,16, "FILLDRN")

addEdge(xV,7, xV,8, "FUE")

addNode(xV,17, "THRSTRCL")

addEdge(xV,13, xV,12, "NXTFUE")

addNode(xV,18, "LIQUID")

addEdge(xV,11, xV,17, "NXTFUE")

addNode(xV,19, "DV REQ")

addEdge(xV,7, xV,12, "FUE")

addEdge(xV,1, xV,16, "FUE")

addEdge(xV,16, xV,9, "NXTFUE")

addNode(xV,20, "ENG4THRSTRCL")

addEdge(xV,17, xV,20, "ENG")

addEdge(xV,15, xV,19, "NXTDV REQ")

addEdge(xV,6, xV,19, "DV REQ")

addEdge(xV,5, xV,10, "NXTFUE")

addEdge(xV,19, xV,20, "ENG")

addEdge(xV,7, xV,17, "FUE")

addEdge(xV,8, xV,20, "ENG")

addEdge(xV,15, xV,20, "ENG")

addEdge(xV,4, xV,18, "FUEL")

addEdge(xV,10, xV,20, "ENG")

addEdge(xV,12, xV,20, ""ENG")

B. Extending Rule Set to Derive Bi-Propellant Systems

The second experiment set the goal towards deriv-

ing the bi-propellant propulsion system shown in Figure.

15. The rule sequence that was used for derivation is (CG1,

BI1, BI2, BI3, BI4, CG2 (×3), BI5, BI6, BI7 (×2), BI8 (×2),

CG4 (×3), CG5 (×3), BI9, BI10, BI11, BI12, CG7 (×4), CG8

(×2)). Comparing Figure. 13 and Figure. 15, it becomes

obvious that the differences between the original, cold-gas

system and the bi-propellant system are greater than those

between themono-propellant system and the bi-propellant

system.

Hence, the rule induction task in this experiment is

expected to be more complex. This circumstance has been

considered in the maximum number of GP generations,

which is set to 2000 for this experiment. The population

size remained at 256 individuals. The aggregated results

over 30 experiment runs are shown in table 3. In this ex-

periment the maximum number of generations has been

exceeded only 2 times and again only in the second itera-

tion.

The results gained in this experiment also show high

variance. Taking both GP iterations together and comput-

ing the mean over 30 repetitions, one rule induction run

required 1442 GP generations, 16.7M direct derivations

and took 192 minutes. The mean number of existing rules

reused is 4. Figure 16 depicts the distribution of reused

rules. In this case themost frequent sets of reused rules are

CG1, CG2, CG5 and CG2 (×2), CG5 (×2) (both 17 of the ex-

periment runs). The casewhere themost ruleswere reused

oc-curred only once and comprises the rules CG1 (×3), CG1

(×3), CG1 (×3), CG7, CG7.

TABLE 3

RESULTS OF MULTI-RULE-LEARN EXPERIMENT FOR MONO-PROPELLANT DESIGN CASE

Generations Duration (s) Elementary Operations Reused Rules

Iteration Mean Std.Dev. Mean Std.Dev. Mean Std.Dev Mean Std.Dev

1st 711.70 233.23 2,375.54 4,682.45 4,507,243.30 4,675,690.31 2.50 1.11

2nd 729.83 530.37 9,138.32 12,825.31 12,167,631.67 16,151,192.51 1.77 1.57

Both 1,441.53 664.41 11,513.86 14,931.26 16,674,874.97 17,220,399.52 4.27 1.93

n=30

ISSN: 2414-4592

DOI: 10.20474/jater-3.4.5

167 J. Adv. Tec. Eng. 2017

Fig. 14 . Target graph of the bi-propellant propulsion system.

Edge labels omitted.

Fig. 15 . Frequencies of reused rule combinations for

bi-propellant design case (n=30).

X. CONCLUSION

Amethod for optimization-based induction of graph-

rewriting production rules was presented. The approach

suf􀅭ices the requirements that induced rules should cooper-

ate with an existing rule set, but the learner is not allowed

to inspect the de􀅭initions of existing rules. Computer ex-

periments showed the practical applicability of the method

to extend existing rule bases to derive new design exam-

ples using existing rules together with newly induced rules.

Comparisons with the manually created rules of the gold

standard showed that the induced rules may not necessar-

ily correspond to human intuition. However, they are func-

tional for reaching the desired target design. Hence, these

induced rules may serve as starting point for further man-

ual inspection and re􀅭inement. Future work should target

the implementation of such a “solution polishing” method.

Further, themethod should be extended by a generalization

mechanism that aggregates speci􀅭ic rules to yield a rule de􀅭i-

nitionwhichallows toderive a greater spanof target graphs.

Lastly, additional goal functions that consider the semantics

of the represented concepts need to be added in order to

provide further guidance to the learners and improve the

similarity with man-made rule de􀅭initions.

REFERENCES

[1] Object Management Group, “OMG systems modeling

lan-guage”, 2015 [Online]. Available: goo.gl/3gRMtr

[2] A. Habel and D. Plump, “Computational completeness

of programming languages based on graph transforma-

tion,” in Foundations of Software Science and Compu-

tation Structures, 4th International Conference, Berlin,

Germany, 2013.

[3] L. C. Schmidt and J. Cagan, “Recursive annealing: A com-

putationalmodel formachine design,” Research in Engi-

neering Design, vol. 7, no. 2, pp. 102–125, 1995.

DOI: 10.1007/bf01606905

[4] L. C. Schmidt and J. Cagan, “GGREADA: A graph

grammar-basedmachine design algorithm,”Research in

Engineering Design, vol. 9, no. 4, pp. 195–213, 1997.

DOI: 10.1007/bf01589682

[5] Z. Siddique and D. W. Rosen, “Product platform design:

A graph grammar approach,” in Proceeding of the ASME

Design Engineering Technical Conference, Lass Vegas,

NY, 1999.

[6] L. C. Schmidt, H. Shetty and S. C. Chase, “A graph gram-

mar approach for structure synthesis of mechanisms,”

Journal of Mechanical Design, vol. 122, no. 4, pp.

371–376, 2000. DOI: 10.1115/1.1315299

[7] R. Alber and S. Rudolph, “43 a generic approach for

engineering design grammars," in proceedings of AAAI

Spring Symposium - Computational Synthesis: From Ba-

sic Building Blocks to High Level Functionality, Califor-

nia, CA, 2003.

[8] P. Sridharan andM. I. Campbell, “A grammar for function

structures,” in Proceeding of the ASME Intlernational De-

sign Engineering Technical Conference and Computers

ISSN: 2414-4592

DOI: 10.20474/jater-3.4.5

https://doi.org/10.1016/j.applthermaleng.2009.05.020
https://doi.org/10.1016/S0045-6535(99)00537-8
https://doi.org/10.1016/S0045-6535(99)00537-8
https://doi.org/10.1016/S0045-6535(99)00537-8

2017 J. R. Eichhoff. F. W. Baumann, D. Roller- In search of missing design 168

and Information in Engineering Conference, Lass vegas,

NY, 2004.

[9] Y. Jin and W. Li, “Design concept generation: A hierar-

chical coevolutionary approach,” Journal of Mechanical

Design, vol. 129, no. 10, pp. 1012–1022, 2007.

DOI: 10.1115/1.2757190

[10] T. Kurtoglu, A. Swantner and M. I. Campbell, “Au-

tomating the conceptual design process: From black

box to component selection,” Arti􀅲icial Intelligence

for Engineering Design, Analysis and Manufacturing,

vol. 24, no. 01, pp. 49–62, 2010. DOI:

10.1007/978-1-4020-8728-8_29

[11] B.HelmsandK. Shea, “Computational synthesis of prod-

uct architectures based on object-oriented graph gram-

mars,” Journal of Mechanical Design, vol. 134, no. 2, pp.

1–14, 2012. DOI: 10.1115/1.4005592

[12] J. Schmidt and S. Rudolph, “Gaining system design

knowledge by systematic design space explorationwith

graph based design languages,” in Proceeding of the In-

ternational Conference of Computational Methods in Sci-

ences and Engineering, Athens, Greece, 2014.

[13] G. Pahl, W. Beitz, J. Feldhusen and K. H. Grote,

"Engineering design: A systematic approach," London,

UK: Springer, 2007.

[14] T. Kurtoglu and M. I. Campbell, “Automated synthesis of

electromechanical design con􀅭igurations from empiri-

cal analysis of function to formmapping,” Journal of En-

gineering Design, vol. 20, no. 1, pp. 83–104, 2009.

DOI: 10.1080/09544820701546165

[15] H. Ehrig, U. Golas, A. Habel, L. Lambers and F. Orejas,

“M-adhesive transformation systemswith nested appli-

cation conditions part 1: Parallelism, concurrency and

amalgamation,” Mathematical Structures in Computer

Science, vol. 24, no. 04, pp. 1–48, 2014.

DOI: 10.1017/s0960129512000357

[16] J. R. Eichhoff and D. Roller, “Designing the same but in

different ways: Determinism in graph-rewriting sys-

tems for function-based design synthesis,” Journal of

Computing and Information Science in Engineering, vol.

16, no. 1, pp. 011 006, 2016.

DOI: /10.1115/1.4032576

[17] C. De la Higuera, “A bibliographical study of grammat-

ical inference,” Pattern Recognition, vol. 38, no. 9, pp.

1332–1348, 2005. DOI: 10.1016/j.patcog.2005.01.003

[18] G. L. Pappa and A. A. Freitas, “Towards a genetic

program-ming algorithm for automatically evolving

rule induction algorithms,” in Proceeding of the Work-

shop on Advances in Inductive Rule Learning, Workshop

at the 15th European Conference on Machine Learning

and the 8th European Conference on Principles and Prac-

tice of Knowledge Discovery in Databases, Berlin, Ger-

many, 2004.

[19] B. Bartsch-Spörl, “Grammatical inference of graph

grammars for syntactic pattern recognition,” in Pro-

ceedings of 2nd International Workshop on Graph Gra-

mars and Their Application to Computer Science, Berlin,

Germany, 1983.

[20] E. Jeltsch and H. J. Kreowski, “Grammatical inference

based on hyperedge replacement,” in proceedings 4th

InternationalWorkshoponGraphGramars andTheir Ap-

plication to Computer Science, Berlin, Germany, 1991.

[21] L. Fürst, M. Mernik, and V. Mahnič, “Graph grammar

induction as a parser-controlled heuristic search pro-

cess,” in proceedings of 4th Intertnational Symposium,

Applications of Graph Transformations with Industrial

Relevance,Berlin, Germany, 2012.

[22] D. J. Cook and L. B. Holder, “Substructure discovery

using minimum description length and background

knowledge,” Journal of Arti􀅲icial Intelligence Research,

vol. 1, no. 1, pp. 231–255, 1994.

DOI: 10.5220/0003637901720178

[23] K. Ates and K. Zhang, “Constructing veggie: Machine

learning for context-sensitive Graph Grammars,” in Pro-

ceedings of the 19th IEEE International Conference on

Tools with Arti􀅲icial Intelligence, Patras, Greece, 2007.

[24] Bahrudin, H. S. Alam and T. Haiyunnisa “Computational

􀅭luid dynamic simulation of pipeline irrigation system

basedonansys,” International Journal of Technology and

Engineering Studies, vol. 2, no. 6, pp. 189-193, 2016.

DOI: 10.20469/ijtes.2.40005-6

[25] E. B. Nejad and R. A. Poorsabzevari, “A new method

of winner determination for economic resource alloca-

tion in cloud computing systems,” Journal of Advances in

Technology and Engineering Research, vol. 2, no. 2, pp.

12-17, 2016. DOI: 10.20474/-jater2.1.3

[26] A. Inokuchi, T. Washio and H. Motoda, “An apriori-

based algorithm for mining frequent substructures

from graph data,” in proceedings of 4th European Con-

ference, Principles ofDataMiningandKnowledgeDiscov-

ery, , Berlin, Germany, 2000.

[27] F. Costa and D. Sorescu, “The constructive learning

problem: An efcient approach for hypergraphs,” in pro-

ceedings of Constructive Machine Learning, Workshop at

the 2013 Conference on Neural Information Processing

Systems, Workshop at the 2013 Conference on Neural In-

formation Processing Systems, Lake Tahoe, CA, 2013.

ISSN: 2414-4592

DOI: 10.20474/jater-3.4.5

https://doi.org/10.1016/S0045-6535(99)00537-8
https://doi.org/10.1016/S0045-6535(99)00537-8
https://doi.org/10.1016/S0045-6535(99)00537-8
https://doi.org/10.1016/S0045-6535(99)00537-8
https://doi.org/10.1016/S0045-6535(99)00537-8
https://doi.org/10.1016/S0045-6535(99)00537-8
https://doi.org/10.1016/S0045-6535(99)00537-8
https://doi.org/10.1016/S0045-6535(99)00537-8
https://doi.org/10.1016/S0045-6535(99)00537-8
https://doi.org/10.1016/S0045-6535(99)00537-8

169 J. Adv. Tec. Eng. 2017

[28] C. Sammut, “Learning as search,” in Encyclopedia of Ma-

chine Learning, C. Sammut and G. I. Webb, Eds. New

York, NY: Springer, 2010, pp. 572–576.

[29] N. Bertrand, G. Delzanno, B. König, A. Sangnier and

J. Stückrath, “On the decidability status of reacha-

bility and coverability in graph transformation sys-

tems,” in Proceedings of the 23rd International Confer-

ence on Rewriting Techniques and Applications, Schloss

Dagstuhl: Leibniz-Zentrum für Informatik, Nagoya, JA,

2012.

[30] D. Plump, “Termination of graph rewriting is undecid-

able,” Fundamenta Informaticae, vol. 33, no. 2, pp.

201–209, 1998. DOI: 10.1006/jsco.1995.1037

[31] D. Bisztray and R. Heckel, “Combining termination

proofs in model transformation systems,” Mathemati-

cal Structures in Computer Science, vol. 24, no. 04, pp.

1–30, 2014. DOI: 10.1017/s0960129512000369

[32] J. R. Koza, "Genetic programming: On the programming

of computers by means of natural selection," Cambridge,

MA: MIT Press, 1992.

[33] M. L. Wong and K. S. Leung, "Data mining using gram-

mar based genetic programming and applications," New

York, NY: Kluwer Academic Publishers, 2002.

[34] J. R. Eichhoff and D. Roller, “Genetic programming

for design grammar rule induction,” in Proceedings of

the 9th International Web Rule Symposium, Rule ML

2015 Challenge, the Special Track on Rule-based Recom-

mender Systems for theWeb of Data, the Special Industry

Track and the RuleML 2015 Doctoral Consortium hosted

by the , Aachen, Germany, 2015.

[35] M. Nikolić, “Measuring similarity of graph nodes by

neighbor matching,” Intelligent Data Analysis, vol. 16,

no. 6, pp. 865–878, 2012.

— This article does not have any appendix. —

ISSN: 2414-4592

DOI: 10.20474/jater-3.4.5

https://doi.org/10.1016/S0045-6535(99)00537-8
https://doi.org/10.1016/S0045-6535(99)00537-8

