
Journal of Advances in Technology and Engineering Studies JATER
2017, 3(1): 11-18

PRIMARY RESEARCH

Flash codes with multibit update for asymmetrical write memory device

Kenneth Ivanson D. Laurel 1*, Proceso L. Fernandez 2

1, 2 Ateneo de Manila University, Quezon City, Philippines

Index Terms
Flash

Flash Code

Flash Memory

Multibit Update

Unibit Update

Received: 30 August 2016

Accepted: 25 September 2016

Published: 12 February 2017

Abstract— A 􀅫lash code is a coding mechanism used to store and retrieve information in a 􀅫lash mem-

ory, which is simply an array of 􀅫lash cells. Because of the write asymmetry property of 􀅫lash cells, a 􀅫lash

code has to be designed carefully in order to ef􀅫iciently make use of the limited number of program-erase

cycles that the 􀅫lash cells can physically tolerate. From the initial studies on unibit update 􀅫lash codes, more

recent researches have introduced the multibit update mechanism for more ef􀅫icient 􀅫lash codes. In this

paper, we propose three different new multibit update 􀅫lash codes. These 􀅫lash codes were simulated in

Java and compared against existing multibit update 􀅫lash codes using the mean data update count as the

main metric for evaluation. The results show that the proposed 􀅫lash codes are very competitive with the

existing multibit update 􀅫lash codes, with the third proposed new 􀅫lash code having superior performance

for some range of data vector lengths. This indicates that the proposed 􀅫lash codes make very ef􀅫icient use

of the 􀅫lash memory cells and, thus, may be helpful in extending the lifetime of 􀅫lash devices.

© 2017 The Author(s). Published by TAF Publishing.

I. INTRODUCTION

A. Flash Codes with Multibit Update for Asymmetrical

Write Memory Devices

Flash memory is a non-volatile type of memory that

is used in many gadgets and appliances. It consists of many

partitions, called blocks, each of which is an array of n

􀅫lash cells capable of storing one of several possible elec-

tric charges that can be discretized into q levels 0,1,…,q-1.

The values in the cells are used to represent some k-bit

data. It is typical to abstract 􀅫lash memory block as a cell

state vector C = (c0,c1,…,cn-1), where each ci ∈ 0,1,…,q-1,

and the contained digital data as an information vector V =

(v0,v1,…,vk-1), where each vi ∈ 0, 1. Each block can further

be logically partitioned into smaller groups of contiguous

cells called slices.

In order to properly store data in and interpret data

from a 􀅫lash memory, a 􀅫lash code is required. Formally, a

􀅫lash code is described by a pair of functions F = (D,E)where

D is the decoding function and E is the encoding function.

The decoding function D(C):0,1,…,q-1n → 0,1k gives the

k-bit information vector V represented by the given cur-

rent cell state vector C. The encoding function, on the other

hand, is used to update the cell state vector C to some new

vector C’ = (c’0,c’1,…,c’n− 1) in order to re􀅫lect the corre-

sponding new k-bit information vector V’ = (v’0,v’1,…,v’k-1)

that replaces the previous vector V. This is typically done by

adding charges, by electron injection, to one or more 􀅫lash

cells in a process that is abstractly referred to as a cell write.

Two different frameworks for the encoding function

have been previously proposed. In the unibit update frame-

work, the function E(i,C):0,1,…,k x 0,1,…,q-1n → 0,1,…,q-1n

∪ ε requires as input the index i, which determines which

single bit vi fromVwill be updated, and also the current cell

state vector C. Under this framework, only one bit from a

previous information vector can be updated at every single

application of this function. On the other hand, in themulti-

bit update framework, the encoding function E(V’,C):0,1k x

0,1,…,q-1n → 0,1,…,q-1n ∪ℇε requires the target new infor-

mation vector V’ to be speci􀅫ied. This enables multiple bits

*Corresponding author: Kenneth Ivanson D. Laurel
†Email: lerual.nosnavi@gmail.com

© The Author(s). Published by TAF Publishing. This is an Open Access article distributed under a Creative Commons

Attribution-NonCommercialNoDerivatives 4.0 International License

http://crossmark.crossref.org/dialog/?doi=10.20474/Jater-3.1.3&domain=pdf
lerual.nosnavi@gmail.com
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

2017 K. I. D. Laurel, P. L. Fernandez - Flash codes with multibit update 12

of the previous information vector V to be simultaneously

updated even with only a single application of the encoding

function.

In both encoding frameworks, the output is either

a new cell state vector C’ ≠ C (with the constraint that c’i

≥ ci for all corresponding elements between the two vec-

tors) or the block erasure ε in case the encoding constraint

cannot be satis􀅫ied. The constraint is based on the physical

write asymmetric property of 􀅫lash cells, wherein it is easy

to add a charge to an individual cell, but removing a charge

requires that all the charges in all the cells of the block be

emptied. This emptying of the charges resets the cell state

vector to the empty state 0n, and this resetting process is

often referred to as a block erasure.

While it is not prohibited to perform a block erasure,

each application of such operation slightly degrades the

􀅫lash cells physically. There is, thus, a limit to the maximum

number of allowable block erasures that a 􀅫lash memory

can accommodate before becoming worn out. It is there-

fore desirable to delay the need to perform a block erasure

as long as possible. This, however, requires that the encod-

ing function of the 􀅫lash code is intelligently designed to

have such feature.

This study aims to introduce new multibit update

􀅫lash codes that may perform competitively with the state

of the art, i.e., delay the application of block erasures similar

to existing multibit update 􀅫lash codes. To do this, we con-

ceptualize newways of encoding and decoding information

in a write asymmetric context, implement these concepts,

perform computer simulations and then measure the mean

data update count. These will be described in greater de-

tail later. We are hoping that by exploring new 􀅫lash codes

that utilize multibit update, we will be able to propose new

ideas that can bring about a more ef􀅫icient utilization of

􀅫lash memory cells and thus help extend the lifespan of

􀅫lash memory devices.

II. REVIEW OF RELATED LITERATURE

Flash codes were motivated by the study conducted

by [1] in “How to reuse a ’write-once’ memory”. The pur-

pose of their study is to explore and demonstrate how a

memory can be rewritten many times in Write-Once Mem-

ory (WOM).

The main aim for 􀅫lash codes is to code and decode

ef􀅫iciently in order to delay the occurrence of block erasure

as much as possible. In this section, several 􀅫lash codes

are presented, including unibit update and multibit update

􀅫lash codes, with the latter described in greater detail.

Flash code was 􀅫irst studied by [1]. Here, they used

􀅫lash codes to represent data when k=2 wherein each bit is

located at either end of the memory. [2] developed another

􀅫lash code in 2008 that can be used when n = k ≥ 3 and 3 ≤

k ≤ 6. They introduced Indexed Codes. This can represent

data for a general k bits. In 2008, [3] developed a code that

can represent data for arbitrary values of k. In that study,

they constructed an extension to the earlier work of [2] to

represent multiple dimensions.

Many unibit update 􀅫lash codes have been proposed

since then. These include the Indexless IndexedFlashCodes

(ILIFC) [4], Layered Indexless Indexed Flash Codes (LILIFC)

[5], Binary Indexed Flash Code [6], K-Partition Flash Code

(KPFC), the Phoenix Flash Code [7], Layered Indexless In-

dexedFlashCodewithAbsorption (LILIFCWA) [8] and a few

more [9], [10] and [11].

More recently, multibit update 􀅫lash codes have been

proposed. Under this framework, it is possible to update

several bits of the information vector using only one ap-

plication of the encoding function. The two 􀅫lash codes

that have been introduced are the Sequential Cascade Flash

Code (SCFC) and the Circular Pair Flash Code (CPFC).

In the SCFC, which was introduced by Bautista et al.,

a cell is allocated for each of the k bits of information to be

encoded. Encoding and decoding are done by checking the

cells of a block sequentially so that logical indexing is not re-

quired. Speci􀅫ically, this 􀅫lash code decodes by reading the

cells from left to right, ignoring full cells. A full cell is a cell

with charge q-1, the maximum possible charge. The parity

of the charge of each cell for the 􀅫irst k non-full cells is used

to determine the value of the data vector. An even parity

means that the corresponding data vector bit has a value of

0, while an odd parity implies a value of 1 (Refer to Figure

1).

Fig. 1 . SCFC decoding example

ISSN: 2414-4592

DOI: 10.20474/jater-3.1.3

13 J. Adv. Tec. Eng. 2017

Fig. 2 . SCFC decoding map

To encode using SCFC, the target k-bit data vector is

written tomatch the parity of the charge of the correspond-

ing 􀅫irst k non-full cells. A cascade occurs if the cell write

makes the cell full. Figure 3 illustrates an example of encod-

ing in SCFC. The example shows nine iterations of update

until a block erasure. V’ is the target data vector for each

iteration, t is the number of bits to be updated from the pre-

vious V’, and ω is the number of cell writes performed for

each iteration.

The initial state of the data vector is (0,0,0,0), or sim-

ply 0000 for shorthand. On the 􀅫irst iteration, t=3 because

three bits were changed from 0000 to 1011. The lighter

blue cells are those cells that were encoded during a given

iteration. The darker blue cells are cells that were already

encoded from the previous iteration/s. Gray cells are full

cells.

Fig. 3 . SCFC encoding example

Fig. 4 . SCFC encoding map (Bautista and Fernandez, 2014)

SCFC requires at least k active cells to represent

the data vector V of length k. If the number of current active

cells does notmatch the count of bits in the data vector, then

a block erasure occurs. Refer to Figures 2 and 4 for the SCFC

decoding and encoding maps.

The Circular Pair Flash Code (CPFC) is the second

multibit update 􀅫lash code, and this was introduced by [12].

In this 􀅫lash code, a block of n cells is divided into 2k slices,

wherein a slice can be of type single or pair. A single slice

is for unibit update while the pair slice is for pair bits up-

date. This requires a block to be of size n ≥ 2k. Each bit vi

of the data vector V can be represented by three slices – the

􀅫irst one is the single slice i, the other two are the bit pairs

ISSN: 2414-4592

DOI: 10.20474/jater-3.1.3

2017 K. I. D. Laurel, P. L. Fernandez - Flash codes with multibit update 14

(i,i-1) and (i,i+1). To decode, the parity of the three slices

represents the data stored for the bit vi . The indices for the

previous and next bit pair slice for bit vi are computed as

follows: ((i+1) mod k) +k and ((i-1) mod k) +k, respectively

(see Figure 5). To encode, the next bit vi+1 and the previ-

ous bit vi-1 of the bit vi are checked in circular fashion and

are updated if necessary. If the pair slices are full, the single

slice is updated when the adjacent bits do not need an up-

date. A block erasure occurs when all the slices for bit vi are

full (see Figure 7). Refer to [12] Circular Pair Flash Code for

a complete discussion of the CPFC.

Fig. 5 . CPFC decoding example [12]

Fig. 6 . CPFC decoding map [12]

Fig. 7 . CPFC encoding example [12]

III. METHODOLOGY

A. Iterative Conceptualization and Design

Based on the published papers, multibit 􀅫lash codes are bet-

ter than unibit in terms of the potential number of bits up-

datedper cellwrites, soweexplored creating andproposing

a 􀅫lash code under the newmultibit update framework. The

main idea that we explored for the proposed 􀅫lash codes is

to attempt to have a guaranteed small number of cell writes

for every application of the encoding function.

This can be done by assigning each cell or group

of cells to correspond to a speci􀅫ic con􀅫iguration of corre-

sponding bits of the data vector. In the extreme case, it is

possible to have at most 2 cell updates for updating any k

bit data vector by simply assigning each cell to a distinct

con􀅫iguration of the k length data.

However, this would require n ≥ 2k cells to be avail-

able in a block, which would put an unrealistic constraint

on the minimum size of a block or on the maximum length

of the bit vector that can be encoded.

To strike a balance, the k bit data were divided into

pairs so that the required number of cells in a block would

be signi􀅫icantly smaller, while at the same time still main-

taining some reasonable guarantee on the maximum num-

ber of cell writes per encoding.

B. Development and Simulation

The concepts and proposed 􀅫lash codes were testing cor-

responding java programs for each and performing simula-

tion experiments. For the simulation, a target data vector

which is composed of a series of 0s and 1s was randomly

generated based on some parameter p (i.e., for each bit, a 0

is generated with probability p, while a 1 has a probability

(1-p). The encoding and decodingmethodswere then over-

ridden to implement the proposed 􀅫lash codes. For each k,

the program was run 30 times.

After each run, the total number of data updates was

recorded. The program was repeated with an increasing

value of k starting from 4 up to 2048, in increments of 4.

After all of the runs have been completed, the total number

of data update was averaged to get the mean data update.

These computed means were then recorded in a csv 􀅫ile.

Table 1 summarizes the parameter values used in simulat-

ing the proposed and also the existing multibit update 􀅫lash

codes.

ISSN: 2414-4592

DOI: 10.20474/jater-3.1.3

15 J. Adv. Tec. Eng. 2017

C. Benchmarking Metrics

The mean data update metric counts the number

of applications of the encoding function before a block era-

sure occurs. Averaging this provides the main metric used

to compare the performances of the existing multibit 􀅫lash

codes with those of the proposed 􀅫lash codes. To illustrate

the mean data update, in Figure 10, the data vector was

changed from 0000 to 1010 in Iteration 1. This change in

the data vector is one data update. Every iteration is one

data update. In this example, the number of data updates is

6. Overall, a higher mean data update is preferred, as this

implies a more ef􀅫icient 􀅫lash code.

Fig. 8 . CPFC encoding map [12]

Fig. 9 . TFFC decoding example for 0100

Fig. 10 . TFFC encoding example for a sequence of 6 updates

resulting in a block erasure

IV. RESULTS AND ANALYSIS

A. Proposed Flash Codes

Two-Bit Four-Cell Flash Code (TFFC):

In TFFC, a block is partitioned into slices having 4

cells each. The 􀅫irst, second, third and fourth cells in the

slice respectively represent the pair bits 00, 01, 10 and 11.

The parity of the cell indicates whether or not the pair bit

is considered to be active. An active cell has an odd parity

charge.

Each of the k/2 pairs of a k-bit data has its own set

of slices. To decode, cells within the slices allocated to each

k/2 pairs are read sequentially from left to right, ignoring

full cells. The parity of the cell is used to determine the pair

bit values assigned to it. To encode, the previous active cell

with an odd parity charge is 􀅫irst deactivated by adding an-

other charge in order tomake the parity even. Then, the cell

corresponding to the pair bit to be activated is charged up

in order to switch its parity from even to odd. In this 􀅫lash

code, n should at least be twice the k (n ≥ 2k), since every

pair of bits has 4 possible con􀅫igurations (00, 01, 10, and

11).

Decoding example: Figure 9provides an example of decod-

ing in TFFC. Here, each cell corresponds to a con􀅫iguration

of a bit pair. The speci􀅫ic con􀅫igurations are shown at the

top of the block in the 􀅫igure. A cell with an odd parity of

charge is the active cell. This is the case for the 2nd and 5th

cells in Fig. 9. Therefore, the actual data vector is 0100.

Encoding example: An encoding example is provided in

Figure 10. In this example, the starting data vector is 0000.

Each pair of bits in a 4-bit data vector is represented as a

4-cell slice. The 􀅫irst two bits of the target data vector cor-

respond to the 􀅫irst four cells of the block, while the last two

bits of the data vector correspond to the last four cells of

the block. To encode 1010 for the 􀅫irst iteration, a charge is

added to the 3rd and 7th cells of the block.

B. Two-Bit Three-Cell Flash Code (TTFC)

From TFFC, it was observed that the cell allocated

for the 􀅫irst pair bits 00 is unnecessary. It can be implied

if the remaining cells all have even parity of charges. Thus

three cells are suf􀅫icient for every pair of bits. In TTFC, a

slice size is always 3where the 􀅫irst cell represents pair bits

01, second cell represents pair bits 10 and the third cell

represents pair bits 11. When there is no odd parity charge

cell on a slice, the pair bits 00 is assumed as the active pair

bit. Each slice still represents a pair of bits from the k-bit

ISSN: 2414-4592

DOI: 10.20474/jater-3.1.3

2017 K. I. D. Laurel, P. L. Fernandez - Flash codes with multibit update 16

information. In this 􀅫lash code, n should at least be 1.5 times

of k (n ≥ 1.5k). Encoding and decoding is similar to TFFC,

except that when the new bit data are 00, the active cell will

be deactivated and no other cell will be activated.

Decoding example: Figure 11 provides an example of de-

coding in TTFC. Here, each cell corresponds to a con􀅫igura-

tion of a bit pair. The speci􀅫ic con􀅫igurations are shown at

the top of the block in the 􀅫igure. A cell with an odd parity

of charge is the active cell. If there are no odd charged cells,

the pair bit represented is 00. This is the case for the 1st

cell in Figure 11. Therefore, the actual data vector is 0100.

Fig. 11 . TTFC decoding example for 0100

Encoding example: An encoding example is provided in

Figure 12. In this example, the starting data vector is 0000.

A 2-bit data vector is represented as a 3 cell slice. The 􀅫irst

two bits of the target data vector correspond to the 􀅫irst

three cells of the block, while the last two bits of the data

vector correspond to the last three cells of the block. To

encode 0100 for the fourth iteration, a charge is added to

the 1st, 3rd and 4th cells of the block. A charge was added

to the 1st and 4th cells to activate the cells, while a charge

was added to the 3rd cell to deactivate the cell.

Fig. 12 . TTFC encoding example for a sequence of 6 updates

resulting in a block erasure

C. Two-Bit Three-Cell First Odd-Parity Flash Code (TFFC-

FO)

From TTFC, it was then noticed that the number of

cells charged is always two except when 00 is involved,

where only one update is needed because of the implied in-

terpretation of 00. A new 􀅫lash code was introduced where

one update may be suf􀅫icient to update a data. Similar to

TTFC, in TTFC-FO a slice size is also always 3 – the 􀅫irst cell

represents pair bits 01, second cell represents pair bits 10

and the third cell represents pair bits 11. When there is no

odd charge cell on a slice, it implies that the pair bit cur-

rently has the value 00. Each slice still represents a pair of

k bits of information. In this 􀅫lash code, n should at least

be 1.5 times of k (i.e., n ≥ 1.5k). Encoding and decoding

are done sequentially on each slice, ignoring full cells. In

decoding this 􀅫lash code, the 􀅫irst odd charged cell in a slice

represents the data of the slice regardless if the succeeding

cells have odd parity of charge.

Fig. 13 . TTFC-FO decoding example for 0100

Fig. 14 . TTFC-FO encoding example for a sequence of 6 updates

resulting in a block erasure

Decoding example: Figure 13 provides an example

of decoding in TTFC-FO. Here, each cell corresponds to a

con􀅫iguration of a bit pair. The speci􀅫ic con􀅫igurations are

ISSN: 2414-4592

DOI: 10.20474/jater-3.1.3

17 J. Adv. Tec. Eng. 2017

shown at the top of the block in the 􀅫igure. First cell in a

slice with an odd parity of charge is the active cell. If there

are no odd charged cells, the pair bit represented is 00. This

is the case for the 1st cell in Figure 13. Therefore, the actual

data vector is 0100.

Encoding example: An encoding example is provided in

Figure 14. In this example, the starting data vector is 0000.

A 2-bit data vector is represented as a 3-cell slice. The 􀅫irst

two bits of the target data vector correspond to the 􀅫irst

three cells of the block, while the last two bits of the data

vector correspond to the last three cells of the block. To

encode 0111 for the last iteration, a charge is added to the

1st, 5th and 6th cells of the block. A charge was added to

the 1st and 6th cells to activate the cells while a charge was

added to the 5th cell to deactivate the cell.

D. Simulation Results

This section describes the results generated from the

computer simulations performed to measure the perfor-

mance of the new proposed 􀅫lash codes. Simulations were

similarly performed on the other existing 􀅫lash codes–SCFC

and CPFC. At every iteration, the update vector is generated

randomly using independent and identically distributed

random variables. The number of data update is written in

a comma separated values 􀅫ile.

Fig. 15 .Mean data update comparison among the new proposed

􀅫lash codes

E. Mean Data Update Comparison among the New Pro-

posed Flash Codes

In Figure 15, TTFC (in purple) has a higher mean

data update than TFFC (in red) because less cells remained

unutilized and only one cell write is needed to change the

data to 00, from 01, 10 or 11. TTFC-FO (in blue) has the

highest mean data update because in this 􀅫lash code, one

cell write is needed to update from a higher bit pair to lower

bit pair combination, e.g., from 11 to 10 or 01, or even from

10 to 01.

F. Mean Data Update Comparison with Previous Multi-

bit Flash Codes

Based on Figure 16, TTFC-FO has almost the same

mean data update with SCFC alone when k > 684. This is

because the cells are not enough for TFFC-FO. In a larger

version in Fig. 17, TTFC-FO has a higher mean data update

compared to and SCFC up until k=28. In all of the proposed

􀅫lash codes, the number of cells actually used is determined

by the maximum number of cells allocated for each k which

can be derived as (3k/2)* ⌊n/(3k/2)⌋ where 3k/2 is the

number of slices for the block. This means that, depend-

ing on the values of n and k, there will be exactly n-(3k/2)*

⌊n/(3k/2)⌋ cells, which will be unused and unutilized be-

cause these cells are not enough to be used for encoding

and decoding with the proposed 􀅫lash codes. These unas-

signed cells are referred to as remainder cells.

Fig. 16 .Mean data update comparison with previous multibit

update 􀅫lash codes

Fig. 17 .Mean data update comparison with previous multibit

update 􀅫lash codes (Zoomed in version)

ISSN: 2414-4592

DOI: 10.20474/jater-3.1.3

2017 K. I. D. Laurel, P. L. Fernandez - Flash codes with multibit update 18

V. CONCLUSION

In this paper, three new multibit update 􀅫lash codes

are introduced. The performances of these three new 􀅫lash

codes were measured using computer simulations, and the

results were compared against other existing multibit up-

dates such as CPFC and SCFC. The third new proposed 􀅫lash

code (TTFC-FO) proved to be better than the existingmulti-

bit update SCFC 􀅫lash code, in terms of mean data updates,

but only for a certain range of values of k for a 􀅫ixed value of

n. For all the new proposed 􀅫lash codes, there is still a big

area for possible improvements because of the currently

unutilized remainder cells.

REFERENCES

[1] R. L. Rivest and A. Shamir, “How to reuse a ’write-once’ memory," Information and Control, vol. 55, pp. 227-231, 1982.

[2] A. Jiang, V. Bohossian and J. Bruck, “Floating codes for joint information storage in write asymmetric memories,’’ in

IEEE International Symposium on Information Theory,Barcelona, Spain, 2007. DOI: 10.1109/isit.2007.4557381

[3] A. Jiang and J. Bruck, "Joint coding for 􀅫lash memory storage," in IEEE International Symposium on Information Theory,

Ontario, Canada, 2008.

[4] E. Yaakobi, A. Vardy, P. Siegel and J. Wolf, "Multidimensional 􀅫lash codes," in 46th Annual Allerton Conference on

Communication, Control, and Computing,Monticello, IL, 2008. DOI: 10.1109/ALLERTON.2008.4797584

[5] H. Mahdavifar, P. Siegel, A. Vardy, J. Wolf and E. Yaakobi, "A nearly optimal construction of 􀅫lash codes," in IEEE

Inter national Symposium on Information Theory, Seoul, Korea, 2009. DOI: 10.1109/isit.2009.5205973

[6] R. Suzuki and T. Wadayama, "Layered index-less indexed 􀅫lash codes for improving average performance," in IEEE

International Symposium on Information Theory,Moscow, Russia, 2011. DOI: 10.1109/isit.2011.6033935

[7] M. J. Tan and Y. Kaji, "Uniform compartment 􀅫lash code and binary-indexed 􀅫lash code," IEICE Technical Report,

Information Theory, vol. 112, no. 124, pp. 25-30, 2012.

[8] G. Corneby, L. K. Sanchez, M. J. Tan, Y. Kaji and P. Fernandez, "Phoenix 􀅫lash code: Introducing the absorption and

revival operations for reducing 􀅫lash memory write de􀅫iciency," in Proceedings of the 11th National Conference for

Information Technology Educators,Dipolog City, Philippines, 2013. DOI: 10.1587/transfun.E96.A.2360

[9] A. Maguyon and P. Fernandez, "Introducing sub-block absorption to improve the performance of the layered index

less indexed 􀅫lash code," [Online]. Available: goo.gl/iCOf3h

[10] H. Nagahara and Y. Kaji, "Index-less ash codes with arbitrary small slices," in International Symposium on Information

Theory and Its Applications, 2012, Hawaii, HI.

[11] H. Esling, R.R. Ortiz and P. Fernandez, "Bi-Modal 􀅫lash code using index-less indexed 􀅫lash code and layered index-less

indexed 􀅫lash code,"AdvancedScienceandTechnologyLetters,vol. 35, pp.19-22, 2013. DOI:10.14257/ijmue.2014.9.9.38

[12] J. S. Agustin and P. L. Fernandez, “Circular pair 􀅫lash code,” [Online]. Available: https://goo.gl/B8DR4L

— This article does not have any appendix. —

ISSN: 2414-4592

DOI: 10.20474/jater-3.1.3

 10.1109/isit.2007.4557381
 10.1109/ALLERTON.2008.4797584
 10.1109/isit.2009.5205973
 10.1109/isit.2011.6033935
 10.1587/transfun.E96.A.2360
 10.14257/ijmue.2014.9.9.38
 https://goo.gl/B8DR4L

