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Abstract— Sentence classi􀅫ication of shortened text such as single sentences of movie review is a hard

subject because of the limited 􀅫inite information that they normally contain. We present a Convolutional

Neural Network (CNN) architecture and better hyper-parameter values for learning sentence classi􀅫ication

with no preprocessing on small sized data. The CNN used in this work have multiple stages. First the in-

put layer consist of sentence concatenated word embedding. Then followed by convolutional layer with

different 􀅫ilter sizes for learning sentence level features, followed by max-pooling layer which concatenate

features to form 􀅫inal feature vector. Lastly a softmax classi􀅫ier is used. In our work we allow network to

handle arbitrarily batch size with different dropout ratios, which is gave us an excellent way to regularize

our CNN and block neurons from co-adapting and impose them to learn useful features. By using CNNwith

multi 􀅫ilter sizes we can detect speci􀅫ic features such as existence of negations like “not amazing”. Our ap-

proach achieves state-of-the-art result for sentence sentiment prediction in both binary positive/negative

classi􀅫ication.

© 2017 The Author(s). Published by TAF Publishing.

I. INTRODUCTION

In Natural Language Processing (NLP), most of the

work with deep learning are deal with learning word vec-

tor embedding by using a neural network [1].

However, CNNwhich is a neural network that shares

their parameter across space, considered to be responsi-

ble for a major breakthrough in sentence classi􀅫ication. Re-

cently researchers started to employ CNN in NLP and they

got promising results, especially in sentence classi􀅫ication

[2].

However, in order to get a better understanding of

CNN we have to think of it as a sliding window deployed

to a matrix. And the shared by the computation units in

the same layer. This weight shared enables learning valu-

able features regardless of their location, while preserving

of their location where do bene􀅫icial features appear.

However, CNN for sentence classi􀅫ication considers

quite powerful because it learns the way to weight individ-

ual words in a 􀅫ixed size in order to produce useful features

for a speci􀅫ic task.

II. RELATEDWORK

Recently, [3] presented away to train simple convo-

lutional neural networks with one layer of the convolution

on top of word vectors obtained from unsupervised neural

languagemodel, to saveword vectors static and try to learn-

ing the other hyperparameters of the model. However, they

found that features extracted obtained from a pre-trained

deep learning model get a good result in the different task.

[4] introduced an excellent study on character-level Con-

vNet for text classi􀅫ication. Also, make comparisons be-

tween ConvNet and against traditional methods like a bag

of the words and n-gram. However, his result illustrate that

character-level of convolutional neural networks is an ef􀅫i-

cient method. On the other hand [5] reported a goodway to

model short texts using semantic clustering and CNN. They

􀅫ind that model uses pre-trained word embedding will in-

troduce extra knowledge, andmulti-scale SUs in short texts

aredetected. [6] introducedamodel to captureboth seman-

tic and sentiment similarities among words, The semantic

component of their model learns word vectors via an-
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unsupervised probabilistic model of documents, theymade

an extended the unsupervised model to incorporate senti-

ment information and showedhow this extendedmodel can

leverage the abundance of sentiment-labeled texts available

online to yield word representations that capture both sen-

timent and semantic relations.

However, the reported method performed better

than LDA, which models latent topics directly [7] they im-

pact of deploying machine learning mechanism to the sen-

tence classi􀅫ication problem. The face challenge in detected

review that not contain keyword to express sentiment po-

larity like (“how could anyone sit through this movie “)

because it is not include any word to give meaning for

negative. They 􀅫ind out that standard machine learning

techniques de􀅫initively outperform human-produced base-

lines. [8] reported a method that can utilize the word order

out sentence, which apply convolutional neural network.

However, use of one dimension structure (word order) of

the document in which each part of convolution layer deal

with a speci􀅫ic part or region of document (sequence of

words). [9] applied bow-CNN and seq-CNN both methods

shows outperform comparing with baseline approach on

all datasets they used also they 􀅫ind that seq-CNN get bet-

ter performance than bow-CNN in sentiment analysis but

on the other hand bow-CNN outperform seq-CNN in topic

classi􀅫ication. Notably, in most of the convolution neural

network on text classi􀅫ication, the input layer is the vec-

tors of the transformed word of the sentence which either

trained by CNN or another approach like (word2vec) [10].

Our work is close to the work [11] which examine

convolutional neural network on top of pre-trained word

vectors whereas our work start training convolutional neu-

ral network and learning to embed from scratch andwe use

one input channel.

III. OURMODEL

The convolutional neural network we built looks as

􀅫igure 1, the 􀅫irst layer is the input layer which embeds

the words into low dimension vector. Followed by a con-

volutional layer which is performed convolutions over the

embedding word vectors by utilize multiple 􀅫ilter sizes or

sometimes called kernel or sliding window. For instance

sliding over 3, 4 or 5 words at a time. The next layer is max-

pool layer which is responsible of max-pool the result or

stack the result from convolutional layer into a long feature

vector, later on we add dropout for regularization, and 􀅫i-

nally the softmax layer that canmake classify the result into

binary classi􀅫ication.

Fig. 1 . Convolutional neural network architecture [13]

Convolution layer will interact with the output of

neurons that are connected to local space in the input, each

computing a dot product between their weights and a small

region they are connected to in the input volume.

The activation function is a nonlinear activation like

Relu applied to the outcome of convolution layer. In com-

mon feed forward neural network, we connect each input

neurone with output one in the followed layer (fully con-

nected layer. However in convolutional neural network ac-

tuallywe convolutions over the input layer to get the output.

Through training, a convolutional neural network automat-

ically learns the 􀅫ilters value depend on the job we want to

perform.

Filters that slide over full rows of thematrix (words).

Thus, the “width” of our 􀅫ilters is generally the same as the

width of the input matrix. The height, or region size, may
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vary, but sliding windows over 2-5 words at a time is looks

good 􀅫igure 2 illustrate the network.

In 􀅫igure 2, each kernel applies convolution on sen-

tence matrix and produce a variant length of feature maps.

Followed by pooling to apply on each map, and the max

value from each feature map is captured feature are con-

catenated to feature vector and then followed by softmax

layer which deal with these feature as input and utilize it to

classify the sentence. In our work we consider binary clas-

si􀅫ication so there is to possibly zero for negative polarity

and one for positive sentence.

Fig. 2 . Illustration of a Convolutional Neural Network (CNN) architecture for sentence classi􀅫ication [4]

A. CNN Architecture

We start by tokenization step in which sentence is

convert to a sentence matrix, the rows represent word vec-

tor of each token. We refer to the word vectors by D. If the

length of a given sentence is S, then the dimensionality of

the sentence matrix is S * D. after that we can deal with

sentence matrix and then perform convolution on this ma-

trix using different size of kernel or 􀅫ilter. However, here

we have to use a kernel with size equal to the width of the

dimensionality of the word vectors. But the high of the ker-

nel can be vary so we can refer to the high of the kernel as

region size of the kernel. In traditional feed forward neural

network if we have 4 input node and 3 feature space then

we have 12 base or parameters, however in CNN if we have

4 input node and the length of the kernel is 2, in this case

we have 6 parameters (3*2).

Therefore, in normal neural network every output

unit interacts with every input unit. However in convolu-

tional neural networks typically have sparse connectivity

(sparse weights), this is done by making the kernel smaller

than input. However, in CNN we share the parameters this

reduce the complexity of the network. Assume that there is

a kernel parameterized by the weight matrix Wwith region

size R. So W will contain R*D parameters to be estimated.

We suppose that a matrix of sentenced as M∈RStt×D and

use M[i : j] to represent the sub-matrix of M from row i to

row j. The output sequence o ∈ RS−R+1 of the convolution

operator is obtained by repeatedly applying the 􀅫ilter on

sub-matrices of A:

Oi = w[i : i+R−1]

Where i = 1 . . . S − R + 1, and is the element wise

product between the sub-matrix and the kernel (a sum over

element-wisemultiplications). And thenwe add a bias term

b ∈ R and an activation function f to each o i, motivate the

feature map c ∈ R S−R+1 for this kernel:

Ci = f(oi + b).

The dimensionality of the feature map generated by

each kernel will be different as a function of the sentence

length and the kernel region size. A pooling stage mean we

are going to do summary statistic of our output for example

take the maximum value of the result of nonlinear stage or

detecting stage, so we can use pooling for down sampling

and this lead to minimize the complexity of the network.

Any classi􀅫ier need a 􀅫ixed size of input so by pooling stage

we down sampling and make them 􀅫ixed size because it’s

going to summarize statistically. A pooling function is thus

applied to each feature map to produce a 􀅫ixed-length vec-

tor.
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A traditional strategy is 1-max pooling [11] which extracts

a scalar from each featuremap. The outputs produced from

each kernel map can be concatenated into a 􀅫ixed-length,

‘top-level’ feature vector, and then the result fed to a soft-

max function to generate the 􀅫inal classi􀅫ication. At this

softmax layer, one may apply ‘dropout’ [12]. As a means of

regularization. This entails randomly setting values in the

weight vector to 0. Our aim is to reduce cross-entropy loss.

The parameters to be learned include the weight vector(s)

of the kernel, the bias term in the activation function, and

the weight vector of the softmax function.

IV. CONVOLUTIONAL NEURAL NETWORK

HYPERPARAMETERS

In order understand how CNN are deal with natural

language processing we need to know about hyperparame-

ters.

B. Narrow VSWide Convolution

May ask how would apply the kernel to the 􀅫irst ele-

ment of amatrix that does not have any neighbour elements

to the top and left? We canuse zero-padding, so all elements

which locate outside the matrix would be zero. Therefore,

we can apply the kernel to each element of our input ma-

trix. However, if we adding zero padding this will call wide

convolution, and a non-zero padding will be called narrow

convolution.

C. Stride Size

The other hyperparameter of our CNN is called stride

size, which can be de􀅫ined as howmuchwewant to shift our

kernel at each step. And a successive applied of kernel over-

lapped. Whenever the size of stride is large this mean less

applied of kernel and also small output size. As illustrate in

􀅫igure 4.

Fig. 3 . Convolution Stride Size. Left: Stride size 1. Right: Stride size 2 [14]

D. Pooling Layer

The pooling layer which considers the main key is

applied after convolutional layer. Pooling layers is sub-

sample their input. A traditional way to do pooling is by

using a max function to the output of each kernel. In nat-

ural language processing, we use pooling over the all out,

yielding a single number for each kernel. The advantage of

using pooling layer is to produce a 􀅫ixed size output matrix,

which is wanted for classi􀅫ication. For instance, if we have

100-kernel and we apply max pooling to each, we will get

100-dimensional output, regardless the size of our kernel,

or either the size of our input. This gives us permission to

apply different size sentences. By applying pooling actu-

ally, we minimize the dimensionality of output but keep the

useful features. We can 􀅫igure out each kernel as detect-

ing particular feature like capturing sentence has negative

meaning like “not good”. However, after applying max func-

tion we can keep information if the feature appears in the

sentence or not.

V. TRAINING A TEXT EMBEDDINGMODEL

Imagine that you want to classify a document we

are going to have to look at the words in that document to

􀅫igure out that. The words are really dif􀅫icult there are a

lots of them and most of them you never, ever see. In fact,

the ones that you rarely see tend to bemost important ones.
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For deep learning more events like that are a problem. We

like to have lots of training examples to learn from. Another

problem is thatweoftenuse differentwords tomean almost

the same thing. for example “ cat” orwe can say ‘ kitty “, they

are not the same , but theymean similar things , sowhenwe

have things that are similar , we really wants like to share

parameter between them , if we want to share anything be-

tween kitty and cat , we are going to have to learn that they

are related. Therefore, wewould like to see those important

words often enough, to be able to learn the meaning auto-

matically. And would also like to learn how words relate to

each other so that we can share parameters between them.

And that would mean collecting a lot of label that there are

many way to use the idea that say similar words occur in

similar contexts. in our case we are going to map words to

small vectors called embeddingwhen are going to be closed

to each other when words have similar meanings , and far

apart when they don’t . Embedding solves of the sparsity

problem. once we have embedded our word into this small

vector now we have a word representation where all the

catlike thing like cats , kitties , kittens , pets, lions are all

represented vectors that very similar.

A. Examine the in􀅲luence of Dropout Training for Convo-

lutional Neural Networks

Dropout is a modern regularization technique that

has been more lately applied in deep learning. we de􀅫ine

regularization as minimize free parameters of the network

and keep the optimization. It is the way to avoid over􀅫itting

in the training stage. However, dropoutwork like this, imag-

ine thatwe have one layer that connects to another layer the

values that go from one layer to the next are often called ac-

tivation function. Take that activation and randomly for

every example, we train our network on we set half of them

to zero. Completely randomly, we basically take half of the

data that is 􀅫lowing through our network and just destroy

it. And then randomly again. So what happen with drop

out? Our network can never rely on any given activation

to be present because they might be squashed at any given

moment. Therefore it is forced to learn redundant repre-

sentation for everything to make sure that at least some of

the information remains. One activation get smashed but

there is always one or more that do the same job and that

do not kill. Everything remains 􀅫ine at the end. Forcing our

network to learn redundant representation might sound

very inef􀅫icient. But in practice, it makes thing more robust

andprevents over-􀅫itting. It alsomakes our network act as if

taking the consensus over an ensemble of networks. Which

is always a good way to improve performance Dropout is

one of the most important techniques to emerge in the last

few years.

B. Batch Size

Batch size consider one of the hyperparameters that

can tuning during training our neural network. So how to

set the optimal batch size? Let's take the two opposite side,

on one side each gradient descent step is applying to the

all dataset. We’re computing the gradients for all example.

In this case we know exactly the directly towards a local

minimum. We don't waste time going the wrong direction.

But in this way, the computation on all dataset will be very

expensive. So let try the other side of our scenario, a batch

size of just 1 example. In this case, the gradient of that ex-

ample may take you entirely the wrong direction. However,

the cost of computing the one gradient was very cheap. And

averaging over a batch of 10, 100, 1000 example is going

to generate a gradient that is a more sense. In our work

in order to 􀅫ind the better batch size we itrate oure modle

multiple time by using intition of the trail and error. We

tried different batch size to 􀅫ind out the optimal batch size

for convergence.

C. Dataset

The dataset we’ll use in this paper is the movie Re-

view data from Rotten Tomatoes. The dataset contains

10,662 example review sentences, half positive and half

negative. The dataset has a vocabulary of size around 20k.

Because of our data set is pretty small we’re likely to over􀅫it

with a powerful model. And also the dataset does not split

to train and test so we split the dataset as follow: 20% test-

ing, 20% validation and 60% training. After that we deal

with pre-processing on dataset which is:

• load positive and negative sentence from the raw data

􀅫iles.

• Clean the text data by converting the all the upper case

letters to the lower case get a ride from the weight space

and so on.

• Pad each sentence to themaximumsentence length, which

turns out to be 59. We append special <PAD> tokens to all

other sentences tomake them59words. Padding sentences

to the same length is powerful since it allowsus to ef􀅫iciently

batch our data since each example in a batch must be of the

same length.
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• Build a vocabulary index and map each word to an in-

teger between 0 and 18,765 (the vocabulary size). Each

sentence becomes a vector of integers.

VII. EXPERIMENT

Experiment for the implementation part and result test,

we used python language based on python compiler under

Linux-os.we have to take care about performance evalua-

tion of our network in term of accuracy and regularization

by tuning hyperparameter batch size and dropout. The

objective of our work is to classify the sentence of movie re-

view into binary classi􀅫ication. So we have two output from

our network 1 for positive sentence and zero for negative

sentence. We examine our model with different hyperpa-

rameters (batch size and dropout) and we try tuning these

parameters in order to 􀅫ind the better convergence for our

model. First we train our model using batch size 64 and

dropout equal to 0.5 to evaluate the net with respect to the

accuracy. The traditional way to regularize CNN is L2 and

dropout in our work dropout. We examine our network

with a variable value between 0.1 and 0.5, and the measure

the accuracy for each value of dropout. We also use differ-

ent kernel size (􀅫ilter) (3, 4 and 5). We test the network

with different values of hyperparameters in order to 􀅫ind

optimal values for these parameters. However, we de􀅫ining

loss function to compute the error of our model, and our

aim is to minimize it. Therefore we apply cross_entropy

loss which measures the loss for each class, given the true

label sample and our output scores of the network. After

that, we take the average of the losses. In table 1 we exam-

ine our model in different batch size (8, 16, 32, and 64). We

get higher accuracy in batch size =32. In table 2we evaluate

the in􀅫luence of batch size to the loss rate in the network.

However, we get theminimum loss when batch size was 64.

TABLE 1

IMPACT OF BATCH SIZE ON LOSS

Batch Size Accuracy

Batch Size Loss

8 17.84

16 13.97

32 9.03

64 6.21

TABLE 2

IMPACT OF BATCH SIZE ON ACCURACY

Batch Size Accuracy

8 0.71

16 0.69

32 0.714

64 0.705

TABLE 3

IMPACT OF BATCH SIZE ON ACCURACY

Batch Size Accuracy Loss Dropout # of Step # of Epoch

8 0.706 27.6 0.5 13500 200

16 0.71 16.5 0.5 67600 200

32 0.701 9.9 0.5 33800 200

64 0.72 6.2 0.5 17000 200
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In our work we try also tuning the hyperparame-

ter dropout to examine our model to get the better perfor-

mance. In the beginning start with the value 0.1 and test

the network for different batch size as show in table 3.

And later on, we try tuning dropout value and make

it equal 0.5 at check the result regarding to the accuracy as

shown in table 4. However, after testing our network on

more time we get the best performance at batch size =64

and dropout=0.5. Finally, we experiment our network by

keeping the batch size 64 and tuning the dropout between

the intervals [0.1-0.5] as shown in table 5. We get a mini-

mum loss and better accuracy at batch size 64 and dropout

value equal 0.5. To sum up, we put all the result in one table

as depict in table 6.

VIII. CONCLUSION AND FUTUREWORK

In the presented work, we performed an experimen-

tal test on CNN built on learning word embedding from

scratch for sentence classi􀅫ication. By tuning hyperparam-

eter of CNN we get better performance in term of accuracy

and regularization. For future work, we can start from the

embedding with pre-trained word2vec vectors.

TABLE 4

THE RESULT AFTER APPLYING MULTIPLE BATCH SIZE AND FIXED VALUE FOR DROPOUT =0.5

Batch Size Accuracy Loss Dropout # of Step # of Epoch

8 0.71 17.84 0.1 13500 200

16 0.69 13.97 0.1 67600 200

32 0.714 9.03 0.1 33800 200

64 0.705 6.21 0.1 17000 200

TABLE 5

ILLUSTRATE THE RESULT OF MULTIPLE DROPOUT VALUE AND THE ACCURACY

Batch Size Dropout Accuracy Loss

64 0.705 6.21 0.1

64 0.69 6.5 0.2

64 0.72 6.3 0.3

64 0.718 6.5 0.4

64 0.72 6.2 0.5

TABLE 6

ILLUSTRATE ALL THE CASE OF THE HYPERPARAMETERS VALUE

Batch Size Accuracy Loss Dropout # of Step # of Epoch

8 0.706 27.6 0.5 13500 200

16 0.71 16.5 0.5 67600 200

32 0.701 9.9 0.5 33800 200

64 0.72 6.2 0.5 17000 200

64 0.705 6.21 0.1 17000 200

64 0.69 6.5 0.2 17000 200

64 0.72 6.3 0.3 17000 200

64 0.718 6.5 0.4 17000 200
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