
Journal of Applied and Physical Sciences JAPS
2021, 7(1): 1-10

PRIMARY RESEARCH

Industrial user interface software design for visual

python AI applications using embedded linux based sys-

tems

Ulas Dikme *

Department of Electrical & Electronics Engineering, University of Gaziantep, Gaziantep, Turkey

Keywords Abstract

Python

C++

Face detection

User interface

Arti􀅫icial intelligence

Industrial software design

Received: 12 November 2020

Accepted: 1 January 2021

Published: 12 March 2021

Python software is one of the most popular languages for arti􀅫icial intelligence applications, especially in the aca-

demic area, because of its easy syntax and ready-to-use libraries. But for industrial usage, due to the nature of

the declarative languages, python is not the preferred language when it is needed to add more functionality to the

application, like user interactions or other software abstractions, which needs more system resources and stabil-

ity, especially in embedded systems. If there is not enough resource to build a new model for AI application for

desired software language, it will be perfect to have the advantage of the ability of python in the AI 􀅫ield. Instead

of creating one python application or more than one python layer in the system, it is ef􀅫icient to abstract the AI

application, which is written in python language, and handle all other activities with more ef􀅫icient languages or

frameworks. In this paper, we will see how we can use a visual python AI application, which communicates with

another software layer written by C++ using the Qt framework for a user interface in an ef􀅫icient way, running in

the backend to handle only AI-related processes. In the example, the python application detects faces in the back-

end and sends related visual data to the frontend application using interprocess communication. The frontend

application will be ef􀅫icient from amemory usage perspective and 􀅫lexible for customer usage in an industrial way.

The whole working demo, consisting of a python face detection application and a C++ program, is available in the

given GitHub link [1] and is explained in a detailed way for software design and the user interface, which will be

written in QML language.

© 2021 The Author(s). Published by TAF Publishing.

I. INTRODUCTION

If a software application is industrial, it means that the ap-

plication must run stable and ef􀅫iciently from a memory

perspective. From the user’s perspective, the interaction

should be 􀅫lawless without freezing or slowing behavior

as much as possible. With declarative languages, achiev-

ing this is quite hard and not necessary. Choosing simple

languages that are close to hardware than declarative ones

will solve the ef􀅫iciency and stability issues. Nevertheless,

sometimes it is impossible to 􀅫ind ready-to-use AI models

or libraries with less abstracted languages according to the

hardware. As is seen, forAI development, python is the pop-

ular language.

It is ideal to use python only for AI applications and create

other layers in the system with more ef􀅫icient languages or

frameworks. In this portable design with AI application, in-

terprocess communication has crucial importance. All lay-

ers should be designed to suppress inef􀅫icient hardware re-

source usage of AI applications. This will save time for com-

panies which has not to havemuch time for development or

resource as people. The system also should be abstracted

and portable so that in the future, layers can be replaceable

with others easily. For instance, for the 􀅫irst time in devel-

opment, python can be used, and later it can be replaced

with another language. Otherwise, the development team

will lose time and money.

AI development is not the main focus here. AI applica-

tion will only work in the backend as a command line pro-

*Corresponding author: Ulas Dikme
†email: ulasdikme@gmail.com

The Author(s). Published by TAF Publishing. This is an Open Access article distributed under a Creative Commons Attribution-NonCommercial-

NoDerivatives 4.0 International License

http://crossmark.crossref.org/dialog/?doi=10.20474/japs-7.1&domain=pdf
ulasdikme@gmail.com
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

2020 U. Dikme – Industrial User Interface Software Design for Visual Python 2

cess. All other programs will be written in C++ using the Qt

framework, especially with functional QMLmodules. In the

demo intentionally, a simple python AI application, which

consumes more memory resources, is chosen. It is easy to

replace it with another python program easily. The demo is

running on Linux based operating system.

Especially for graphical operations, drawing primitives to

screen with QML [2] will be more ef􀅫icient when all calcu-

lations are done with C++ and sent to QML Qt [3] commu-

nication mechanism. Also, the Qt framework will give more

􀅫lexibility in choosing the graphical pipeline in the operat-

ing system. In embedded systems, graphical operations can

use noticeable memory if the correct structure is not deter-

mined.

A. Signi􀅲icance and Objectives of the Study

Most visual AI research is donewith python software, espe-

cially nowadays, because of its easy syntax and ready-to-use

libraries. But when visual AI research is wanted to be used

in real life, especially in embedded systems [4] for industrial

usage, there can be hardware problems when adding more

functionality to the application, like the user interface or

database access. Because of the essence of declarative lan-

guages like python, it will consumemore CPU power, which

means it is not a preferable option for embedded devices. If

it is wanted to be used hardware-friendly languages, there

may be more time needed to replace the python language

for the AI model, which is not practical.

This paper discusses how it is possible to use a visual AI

model [5] with python without consuming more hardware

resources. To do that, python handles only visual AI-related

processes. Hardware-friendly languages and frameworks

handle all other software processes like the user interface

or hardware access. Related software design is discussed

from a system and object-oriented perspective.

II. OVERVIEW QT FRAMEWORK

Qt [6] is a cross-platform development framework [3]that

includes graphical user interfacemodules andC++ libraries.

For the modules, it is possible to create ef􀅫icient 3D designs

for simple HMI structures using OpenGL with the scripting

language. Also, with external C++ libraries, it is possible

to combine the desired functionality with Qt [7]. And also,

choosing the desired C++ version, it is possible to add other

items or bind external libraries. One of the best features

of Qt is the signal, and slot [8, 9] mechanism, which con-

nects two or more objects or functions regardless of their

state and dependency. This allows us to easily talk about

the graphical design part from the C++ side. In this manner,

reasonable to calculate or process algorithms with C++ and

represent the result to the QML [10].

Fig. 1. Block diagram of the application

A. QML language

QML is a declarative language [2] that uses visual modules

or components likebuttonsor3D 􀅫luid animations. The syn-

tax is readable and can be combined with javascript. Us-

age is straightforward and portable. It is possible to run the

sameQML [11] application on different hardware and oper-

ISSN: 2414-3103

DOI: 10.20474/japs-7.1

3 J. appl. phys. sci. 2020

ating systems like windows and Linux. With other modules

like multimedia module that bene􀅫its the visual part, it will

be effortless to create and combine different behaviors. In

Listing 1, you can see a simple example.

Fig. 2. QML example

It is possible to create a coordinational relationship be-

tweenQMLobjects [11] and easily handle fundamental user

interactions like a keyboard, touch screen, or mouse.

To design the visualmenus or navigation systems, QMLpro-

videsmodel structures that will help to organize the related

objects on the screen. In this example, it will be used the

stackView [12] model will create a stack to hold each menu

element and control it accordingly to the user interactions

for the gridView model to produce handy visual interfaces.

Fig. 3. Menu design with stackview module

ISSN: 2414-3103

DOI: 10.20474/japs-7.1

2020 U. Dikme – Industrial User Interface Software Design for Visual Python 4

Fig. 4. Output of the Gstreamer pipeline

B. Gstreamer and Qt Multimedia

The IPC mechanism, which is handled by the Gstreamer

tool, is used to share the frames [13] from AI applications

with UI. Gstreamer is a tool [14] to create a pipeline for

graphical operations. It can be used directly from the code

base or as a command line tool. Using Gstreamer, an appli-

cation can access the camera, shared memory, or socket to

get the frames or related data. It is not only used for video

processing. It can also be used for audio applications.

With the command line tool, it is easy to create the pipeline.

As seen in Figure 5, the gst-launch is the application name,

and there are two more modules. Videotestsrc is the test

source for video, and ximagesink is the sink point for the

layer that will be used to represent the video. The xima-

gesink is used for Xserver-based systems.

Fig. 5. Gstreamer pipeline example

The output of Listing 2 can be seen in Figure 4. There is a

source element, which can be a camera or another pipeline

output. And there is a sink element to clarify where data

may be sent. The created pipeline can be distributed or di-

vided according to needed behavior.

In typical pipelines, there will also be a 􀅫ilter element. For

example, to use a camera element, for example, a camera el-

ement, sometimes it is necessary to 􀅫ilter it to align the data

type with the sink element. A simple pipeline diagram can

be seen in Figure 5.

Fig. 6. Simple Gstreamer pipeline diagram

The Gstreamer tool connects the python AI application and

the frontend Qt application for the IPC mechanism. Data

will be shared over UDS (UNIX domain socket) [15] socket.

Usage can be seen in Figure 1 as an IPC mechanism.

It is possible to use the Gstreamer tool with QML directly

with the help of the multimedia module. Example usage is

in Figure 7. As it is seen for Qt, there is another sink ele-

ment. For the python visual AI application OpenCV is the

interface for Gstreamer [13].

ISSN: 2414-3103

DOI: 10.20474/japs-7.1

5 J. appl. phys. sci. 2020

Fig. 7. Multimedia pipeline example

C. Graphical structure and Qt

Windowing systems [16] cannot be ef􀅫icient with platforms

where there are not enough hardware resources, like em-

bedded environments. With Qt, it is possible to choose and

con􀅫igure the graphical stack for the application. It can use

Wayland or Xorg [17] or directly access Opengl. For embed-

ded applications, It is recommended to use EGLFS, which is

an interfacewith Opengl. These platforms should be con􀅫ig-

ured during the compilation.

With EGLFS [18], the Qt application will not use Xorg. Be-

cause of that, there will be high CPU usage saves. Therefore

EGLFS will push the application for full screen. This should

also be considered If there ismore than one application that

needs windowing representation.

Qt framework (for Qt5) creates a GUI structure [19], includ-

ing graphical elements based on the core. These include

non-GUI functions, and QPA (Qt Platform Abstraction) [20]

is implemented as a plug-in abstraction layer of the plat-

form basic window system and is dynamically loaded when

Qt Application is started.

Ef􀅫iciency is related to compositor [21]. With EGLFS [22]

graphical output is not needed to send to a compositor like

Xserver, which brings ef􀅫iciency. The simple stack can be

seen in Figure 12.

III. SOFTWARE DESIGN AND IMPLEMENTATIONWITH

USER INTERFACE

As it is seen Python application is running in the back-

ground. It sends the frames, including AI-processed results,

to the Qt application via the Gstreamer pipeline using UDS.

Using the multimedia QML module, these frames will be

represented on the screen, and the Qt application will draw

other graphical primitives like buttons [23], menu objects,

title bars, etc. The result can be seen in Figure 4.

A. Design with class diagram

As is seen in Figure 11, there is a class named Network,

which represents the network con􀅫iguration menu element

in the graphical design. For each menu element, it is a good

idea to use a software design like this in the 􀅫igure. In QML,

it is possible to create modules; in this design, each mod-

ule has its class used for communication with C++ and the

frontend part. When the user clicks the networkmenu item,

NetworkUI’s constructor is called, andwhen the userwants

to leave the network page, Network UI class is destructed.

This approach will reduce memory usage because the user

does not use all menu items simultaneously.

Fig. 8. Simple Linux graphical stack with EGLFS

ISSN: 2414-3103

DOI: 10.20474/japs-7.1

2020 U. Dikme – Industrial User Interface Software Design for Visual Python 6

Whenever the user opens a new page from the menu, there

are still objects like the title bar or keyboard in the back-

ground. These should be able to communicate with the

menu objects. These common objects, like the keyboard

or title bar, have the same life span as the application. For

example, during the network con􀅫iguration, which can take

some timebecause of thehardware, the user canbeupdated

accordingly using a popup screen or changing the text on

the title bar. And also, when the user clicks the text input,

the keyboard should appear; therefore, it should not over-

lap the text input. Otherwise, it is not possible to see what

is typed, especially on small screens, so when the keyboard

appears, text input should go up according to the height of

the keyboard. The size information of the keyboard can be

held in the abstracted object. As is seen in Figure 6, the net-

workmenu item is open, and there is no keyboard, butwhen

the user wants to edit one of the text inputs, the keyboard

will pop up from the downside of the screen. The problem

is that it should not overlap the text input. Otherwise, it is

impossible to see what is entered or updated by the user.

This issue can frequently happen on the small screens used

in embedded applications. In 􀅫igure 10, you can see that the

keyboard is active, and text input areas aremoved to the up-

side according to the keyboard’s width. Therefore, the key-

board object does not belong to the menu class; otherwise,

it should be constructed when a menu item is created. This

can create slow behavior during each user interaction. That

is why the keyboard should be abstracted from the menu

items and related data held by the different classes. Also,

data can be used commonly from all menu items. That is

why it is a good idea to create an object at the beginning of

the program which holds object information and a pointer

to access. Andeachmenu itemcanuse themtoaccess it or to

write it. There can bemany objects. In the design, there are

two classes: one is for the screen keyboard, and the other is

for the title bar to show noti􀅫ications to the user in case of

any situations. One adapter interface can return the desired

pointer of the controller class tomenu objects. This reduces

dependency on a class named Network UI.

Fig. 9. Network page without keyboard

Fig. 10. Keyboard object does not overlap the network page

items

An interface may handle network con􀅫iguration, such as IP

address update or representation. These operations can

take some time because of hardware dependency. Users

should be updated about the current situation during this

time, and this page should still stay alive. And also, during

the con􀅫iguration time user interface should still be active,

and there should be no freeze or slow behavior. To achieve

this, throwing a thread is a simple idea to run the process in

ISSN: 2414-3103

DOI: 10.20474/japs-7.1

7 J. appl. phys. sci. 2020

parallel. Butwhat happens if a user sets the IP address again

without waiting for the last process to be 􀅫inished when

there are still un􀅫inished jobs? This can cause race con-

ditions and access violations for the program, which may

cause a crash for the binary. It is possible to create a class

that handles thread operations in a queue asynchronously

to address this issue. When there is a new task to be done,

it should be sent to the queuemanager class to be executed.

If when user wants to leave the page, queue size can be

checked. If it is not zero, that means there are still undone

jobs, and the user should not leave the page, or all jobs

should be canceled, and the user noti􀅫ied accordingly. As

it is evident that there may be a timeout for each process,

sometimes hardwareprocesses need a restart or to behung,

and this can cause to make a user wait longer in the cur-

rent menu. The timeout can be added to a queue manager;

if time is exceeded, the job can be canceled to overcome this

issue.

Fig. 11. Class diagram of the Qt application

To handle undesired behaviors during user interaction,

QML also can be used. For instance, to set the IP address

when the user clicks the ”Apply” button in Figure 9 until the

hardware is done, it can be deactivated and activated again

when the new IP address is set. The same approach also

can be used to keep the user on the current page. The back

button, which redirects to the main menu, can be disabled,

and the user can be noti􀅫ied using a popup screen or title

bar. In this way, there can be extra protection for memory

or hardware problems that the user can cause.

The design is portable, and the same structure can be ap-

plied to other menu items. Unnecessary classes can be re-

moved, and desired ones can be added. For instance, for

the User menu item, there can be no need for the Network

Manager class, but the 􀅫ile handler class is needed, so us-

ing the same pattern, the File Handler class can be added

and used ef􀅫iciently. This will make the whole structure

easy to understand and sustainable for maintenance. Ad-

ditionally, when a user leaves the page, all unused objects

will be destroyed, increasing performance from a memory

perspective. Unused objects should not be kept; otherwise,

it is possible to see performance issues. As a result of the

design, the menu item should inherit the classes related

only to this item and should have an aggregation relation-

ship with objects already alive for common graphical ob-

jects over the interface or a pattern [24] like an adapter [24]

pattern. For queue thread handlers, it is possible to usemu-

tex and synchronization primitives. Still, it is preferable to

use a lock-free mechanism not to see any effect when the

memory model changes from strong to weak or vice versa.

For queue thread handlers, it is possible to use mutex and

synchronization primitives. Still, it is preferable to use a

lockfree mechanism not to see any effect when the memory

model changes from strong to weak or vice versa.

ISSN: 2414-3103

DOI: 10.20474/japs-7.1

2020 U. Dikme – Industrial User Interface Software Design for Visual Python 8

Fig. 12. Example activity diagram

B. Behavior with activity diagram

The simple IP set activity is explained in Figure 10. When

a user wants to set or change the device’s IP address, it is

necessary to open the desired con􀅫iguration page using the

menu items. There can be a simple text 􀅫ield on the page to

show and edit the IP address. Set command can be taken

from a button, check box, or directly from the text 􀅫ield it-

self. Many actions should be taken when a set order is re-

quested from the user in the background. First, it is a good

idea to disable the exit button for the current page if there

is no asynchronous structure. The user should be noti􀅫ied

according to the situation so the title bar can be used to do

it. From the title Bar Controller class, it is possible to change

the text with animation according to the current situation.

During this time user can not leave the page. If the user

wants to leave the page, then the current process should be

destroyedbefore theNetworkUI page is killed or destroyed;

otherwise, therewill bememory issues, which can affect the

whole program for the application. This is because, for each

page, there is a class object when it is constructed when the

page is requested. Simply page lifetime is equal to a class

object in a code base. After the given timeout, which is used

for the case thatwhen there is a problemduring theprocess,

if IP is set, then the title bar should be updated according to

the successful result, and the current exit button can be en-

abled, so the user can safely leave the current page. If, after

a timeout, there is no successful result, then the task bar is

updated with an unsuccessful result, and the current exit

button can be enabled.

Fig. 13. High CPU usage. Without the design CPU usage for

Xorg is really high.

ISSN: 2414-3103

DOI: 10.20474/japs-7.1

9 J. appl. phys. sci. 2020

Fig. 14. Low CPU usage. When design is applied, for Xorg,

CPU usage is really low.

IV. RESULTS AND DISCUSSION

With this design, it is possible to see in Figure 13 and Figure

14 that there is about a 40 percent CPU usage difference for

XOrg. Because of the EGLFS platform, CPU usage can be re-

duced. In Figure 13, the current design is not used; all win-

dowing representation is handled by the python language.

In Figure 14, only AI calculations and algorithms are han-

dled by python, and other windowing processes and other

UI based behaviors are handled by theQt application, which

is implemented like the designwhich is explained in this pa-

per.

Not only CPU usage improvement and also due to the 􀅫lexi-

bility of QML language, but it is also easy to create industrial

user interfaces on the current designwith keeping the same

ef􀅫iciency as much as possible during real-time vision [25]

data representation on the screenwhile UI elements are ac-

tive.

As a consequence of the portable design, the same pattern

can be used for user interface development which reduces

the number of bugs and development time. It will keep con-

sistency for all UI elements in the application. Furthermore,

because of themodular structure, in case of changing the AI

model, which can be a different framework or library, it is

easy to replace the python AI application with the new one

to test or make a demo.

REFERENCES

[1] Github. (2022) Industrial user interface example for Python Visual AI Applications with Qt. [Online]. Available:

https://bit.ly/3RmKegM

[2] Wikipedia. (n.d) What is qmls? [Online]. Available: https://en.wikipedia.org/wiki/QML

[3] Wikipedia. (n.d) What is qt? [Online]. Available: https://en.wikipedia.org/wiki/Qt

[4] A. Vaduva, A. Gonzalez, and C. Simmonds, Linux: Embedded development. Birmingham, UK: Packt Publishing Ltd, 2016.

[5] G. S. Nagpal, G. Singh, J. Singh, and N. Yadav, ``Facial detection and recognition using opencv on raspberry pi zero,''

in 2018 International Conference on Advances in Computing, Communication Control and Networking (ICACCCN). IEEE,

2018, pp. 945-950.

[6] L. Z. Eng, Hands-On GUI Programming with C++ and Qt5: Build stunning cross-platform applications and widgets with

the most powerful GUI framework. Birmingham, UK: Packt Publishing Ltd, 2018.

[7] M. C. Neto, S. S. Andrade, and R. L. Novais, ``Cross-platform multimedia application development: for mobile, web,

embedded and iot with qt/qml,'' pp. 23--26, 2017.

[8] T. Shevgunov and E. E􀅫imov, ``Software implementation of spectral correlation density analyzer with RTL2832U SDR

and Qt framework,'' in Computer Science On-line Conference. Cham, Switzerland: Springer, 2019.

[9] J. M. Willman, ``Working with Qt Quick,'' in Beginning PyQt. Berkeley, CA: Apress, 2022, pp. 359-394.

[10] V. V. Savinykh and O. V. Postylyakov, ``On development of cross-platform software to continue long-term observations

with the Brewer Ozone Spectrophotometer,'' in Remote Sensing of Clouds and the Atmosphere XXIII. Berlin, Germany:

SPIE Remote Sensing, 2018, pp. 212-223.

[11] G. Lazar and R. Penea,Mastering Qt 5: Create stunning cross-platform applications using C++ with Qt Widgets and QML

with Qt Quick. Birmingham, UK: Packt Publishing Ltd, 2018.

ISSN: 2414-3103

DOI: 10.20474/japs-7.1

https://bit.ly/3RmKegM
https://en.wikipedia.org/wiki/QML
https://en.wikipedia.org/wiki/Qt

2020 U. Dikme – Industrial User Interface Software Design for Visual Python 10

[12] N. Sherriff, LearnQt 5: Buildmodern, responsive cross-platformdesktop applicationswithQt, C++, andQML. Birmingham,

UK: Packt Publishing Ltd, 2018.

[13] R. Shilkrot and D. M. Escrivá, Mastering OpenCV 4: A comprehensive guide to building computer vision and image pro-

cessing applications with C++. Birmingham, UK: Packt Publishing Ltd, 2018.

[14] N. K. Goel, M. Sarma, S. Valluri, D. Agrawal, S. Braich, T. S. Kuswah, Z. Iqbal, S. Chauhan, and R. Karbar, ``Captionai: A

real-time multilingual captioning application.'' in INTERSPEECH: Show & Tell Contribution, 2019.

[15] S. M. Palakollu, Practical System Programming with C. Berkeley, CA: Apress.

[16] L. Z. Eng, Qt5 C++ GUI Programming Cookbook: Practical recipes for building cross-platform GUI applications, widgets,

and animations with Qt 5. Birmingham, UK: Packt Publishing Ltd, 2019.

[17] Wiki. (n.d) What is xorg. [Online]. Available: https://wiki.archlinux.org/title/xorg

[18] Qt. (n.d) What is eglfs. [Online]. Available: https://doc.qt.io/qt-5/embedded-linux.html

[19] Y. Xiang, Y. Chen, J. Ye, B. Wen, and H. Hu, ``Design of multi-parameter monitoring system based on embedded Linux+

Qt,'' Zhongguo yi Liao qi xie za zhi= Chinese Journal of Medical Instrumentation, vol. 44, no. 2, pp. 127-131, 2020.

[20] Qt. (n.d) What is qpa? [Online]. Available: https://doc.qt.io/qt-5/qpa.html

[21] D. Bogosavljev, M. Popovic, and D. Bogdanovic, ``Analysis of a software based hardware composer adaptation,'' in 29th

Telecommunications Forum (TELFOR). IEEE, 2021, pp. 1-3.

[22] B. Barladian, N. Deryabin, A. Voloboy, V. Galaktionov, and L. Shapiro, ``High speed visualization in the JetOS aviation

operating system using hardware acceleration,'' in CEURWorkshop Proceedings, 2020.

[23] J. Zhang, X. Tian, and Q. Duan, ``Design and implementation of vehicle terminal graphic interface based on QT,'' Journal

of Physics: Conference Series, vol. 1486, no. 7, pp. 1-5, 2020.

[24] D. Nesteruk, Design patterns in modern C++: Reusable approaches for object-oriented software design. Berkeley, CA:

Apress, 2018.

[25] J. Sigut, M. Castro, R. Arnay, and M. Sigut, ``OpenCV basics: A mobile application to support the teaching of computer

vision concepts,'' IEEE Transactions on Education, vol. 63, no. 4, pp. 328-335, 2020.

ISSN: 2414-3103

DOI: 10.20474/japs-7.1

https://wiki.archlinux.org/title/xorg
https://doc.qt.io/qt-5/embedded-linux.html
https://doc.qt.io/qt-5/qpa.html

	Introduction
	Significance and Objectives of the Study

	OVERVIEW QT FRAMEWORK
	QML language
	Gstreamer and Qt Multimedia
	Graphical structure and Qt

	SOFTWARE DESIGN AND IMPLEMENTATION WITH USER INTERFACE
	Design with class diagram
	Behavior with activity diagram

	RESULTS AND DISCUSSION

