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Abstract—There are many spatial interpolations schemes, but none of them can perform 

best in all cases. Hence, this study aims to find an optimal interpolation scheme for 

precipitation in Selangor and Langat basin of which are the two major basins in Selangor. 

In order to obtain spatially distributed precipitation data, 21 measured rain gauges points 

are interpolated. Five interpolation methods have been tested after exploring data and 

cross-validation was used as the criterion to evaluate the accuracy of the various methods. 

The best method was obtained by the kriging method while the inverse distance weighting 

(IDW) perform worst.  

  

 

 

 
I.  

I. INTRODUCTION 
 

Hydrology and water quality applications in catchment 

areas no doubt require data on the most important 

parameter which is the precipitation. Since these data are 

often collected using the rain gauge, they are then 

considered as point data. However, the use of single rain 

gauges as precipitation inputs carries great uncertainties 

regarding runoff estimation [1]. This presents a great 

problem for the prediction of discharge, groundwater level 

and soil moisture, especially if the rain gauge is located 

outside of the catchment [2]. As result, some applications 

such as precipitationmapping on erosions [3],[4],[5],[6],[7]  
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and hydrological modelling [8],  [9],[10],[11],[12],[13],[14] 

require precipitation data that are spatially continuous. 

The quality of such result is thus determined by the quality 

of the continuous spatial precipitation [15], [16], [9], [17], 

[14]. 

Spatial interpolation can be used to estimate 

precipitation variables at other locations. Although there 

are several methods to perform this, it can be a challenging 

task to determine which of the methods produce the 

results closest to the actual conditions. Each methods 

advantage and their disadvantages hence depend strongly 

on the characteristics of the data set used in order to 

define their suitability. Thus, criteria must be fund to 

decide whether the method chosen is suited for the point 

data set. Besides, it is also important to define the aims of 

the interpolation as different aims can represent different 
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criteria for the evaluation of the interpolation method 

used. The most frequently used deterministic methods in 

spatial interpolation for precipitation are the Thiessen 

polygon and Inverse Distance Weighting (IDW) while the 

geostatistical method constitutes a discipline involving 

mathematics and earth sciences. [18] compared Inverse 

Distance Weighting, the Thiessen polygon and kriging in 

interpolating precipitation data from a network of thirteen 

rain gages on Norfolk Island. They recommended the use 

of IDW for interpolations for spatially dense networks. 

[19] used cross validation to evaluate four forms of kriging 

and three simple alternatives for spatial interpolation of 

climatic data.  

They found that IDW had a smaller error of estimates 

than Ordinary Kriging (ORK) and Universal Kriging (UNK) 

in interpolating monthly precipitation in the Canadian 

boreal forest. [20] studied the variability of spatial and 

temporal precipitation in the south Ecuadorian Andes 

using the Thiessen polygon and kriging. Their study 

suggested that spatial interpolation with kriging gives 

better a result than Thiessen polygon, and the accuracy of 

both methods improves when external trends are 

incorporated. [21] analysed the spatial distribution of 

precipitation in the Indian Himalayas using both 

deterministic and geostatistical methods. They reported 

that UNK was the most suitable method, followed by ORK 

and IDW. 

Although comparisons of interpolation Methods for 

precipitation in numerous areas of the world has been 

studied,[22],[23],[24],[25],[26],[27],[28],[29][30],[31],[32]

[33], [34] review of the literature reveals that no 

interpolation study of climatic variables has been applied 

to the study area. However, there is a single attempt to 

introduce a method for estimating mean monthly 

precipitation in the Langat River Basin, Selangor by 

analyzing its precipitation trend [35]. 

In this study five GIS-based spatial interpolation 

methods were compared to determine their suitability for 

estimating mean monthly precipitation, from data 

recorded at nearly21 rain gauges in Selangor. This study is 

then constructed in two parts: the first consists of the 

presentation of the precipitation network in Selangor, the 

available data and the different methods used to spatially 

interpolate the precipitation of the area. While the second 

part presents the methodological of the analysis and the 

results obtained from the evaluation method. In this part, 

cross-validation method isused to assess which method 

gives the best interpolation.  

 

 

II. MATERIALS AND METHOD 

A.  Study Area 

 

The Selangor and Langat River basin in the Selangor 

state is used as the case study basin. The total area of the 

study basin is around 2514.13 sq. km. and the climate is 

Tropical with hot, dry season and wet monsoon 

season.The basin is divided into 34 subcatchment areas 

(20 in Selangor catchment and 14 in Langat catchment), 

each of which is a source of surface runoff as well as an 

independent groundwater aquifer.  

 

 
 

 Fig.1. Schematic Localityofthe Basins inSelangor 
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     Selangor catchment 

Sungai Selangor basin which is located in the state of 
Selangor is approximately 70 km long and 30 km wide that 
stretches from Bukit Fraser on the northeast to the Straits 
of Malacca in the west with a catchment area of 1820 sq. 
km. Among the main tributaries in the basin area are Sg 
Batang Kali, Sg Serendah, Sg Kuang, Sg Ranching, Sg Buloh, 
Sg Kerling and Sg Garing. The flow of the Sungai Selangor 
in general is in the south west direction before ending into 
the Straits of Malacca via the town of Kuala Selangor. 
Alluvial soils accounted 55% of the area which mainly are 
in the coastal plains and riverine areas, although part of 
this area especially the coastal peat area have been 
drained for paddy cultivation while some hilly areas are 
cultivated for oil palm and rubber plantation. Selangor 
basin experienced high temperature and humidity with a 
relatively small amount of seasonal variations besides 
subjected to two monsoonal periods which are the 
Northeast Monsoon (October till January) and the 
Southwest Monsoon (May to September). Average 
precipitation is in the range of 2000 mm to 3500 mm with 
the largest peak during the Northeast Monsoon.  

 
 Langat Catchment 

The Langat basin is located at the southern part of Klang 
Valley which is the most urbanized river basin in Malaysia. 

It is believed that the Langat basin is currently 
experiencing “spill over” effects due to excessive 
development in the Klang Valley. Hydro meteorologically, 
the Langat basin is affected by two types of monsoon, i.e. 
the northeast (November-March) and the southwest 
(May–September) monsoons. Average annual precipitation 
is about 2400mm. The wettest months are April and 
November with average monthly precipitation exceeding 
250mm, while the driest month is June with average 
monthly precipitation not exceeding 100mm. 
Topographically, the Langat basin can be divided into 
three distinct areas with reference to the Langat River: the 
mountainous area in the upstream, undulating land in the 
centre and flat flood plain in the downstream. The basin 
has a rich density of landforms; surface features and land 
cover [35]. 
 

B. Data Collection 
 

The data used in this study comprise continuous 
records of mean monthly precipitation for the period 
(1970-2010) in 21stations scattered throughout the 
study area (Fig. 2). These data have been originally 
provided by the Department of Irrigation and Drainage 
Malaysia for all precipitation gauges in the study area.

 

 
 

                             Fig. 2. Location of the 21 rain gauges stations used in the study 
 
 

III. INTERPOLATION METHOD 
 
The interpolation methods used in this study were 

performed by ESRI ArcGIS® Geostatistical Analyst 10.2. 
Geostatistical Analyst is an extension to the ArcGIS 
Desktop that provides a powerful suite of tools for spatial 

data exploration and surface generation using 
sophisticated statistical methods. Geostatistical Analyst 
provides two groups of interpolation techniques: 
deterministic and geostatistical. All methods rely on the 
similarity of nearby sample points to create the surface. 
Deterministic techniques use mathematical functions for 
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interpolation. Geostatistics relies on both statistical and 
mathematicalmethods, which can be used to create 
surfaces and assessthe uncertainty of the predictions. This 
section briefly introduces the different interpolation 
methods used in this study, detailed descriptions of these 
methods are reported elsewhere [36],[37],[38],[39]. 

 
C.  Deterministic Methods 

 
Deterministic interpolation methods create surfaces 

from measured points, based on either the extent of 
similarity like Inverse Distance Weighted or the degree of 
smoothing such as Radial Basis Functions. Deterministic 
interpolation methods can be divided into two groups: 
global and local. Global methods calculate predictions 
using the entire dataset. Local methods calculate 
predictions from the measured points within 
neighbourhoods, which are smaller spatial areas within 
the larger study area. Geostatistical Analyst provides the 
Global Polynomial as a global interpolator and the Inverse 
Distance Weighted, Local Polynomial, and Radial Basis 
Functions as local interpolators. Deterministic 
interpolation techniques may be exact or inexact 
interpolators. Exact interpolators such as Inverse Distance 
Weighted Interpolation and Radial Basis Functions 
generate a surface that passes through the control points. 
In contrast, inexact interpolators such as Global and Local 
Polynomial predict a value at the point location that differs 
from its known value. 
 
 Inverse Distance Weighted (IDW) Interpolation 

IDW is the workhorse of spatial interpolation, the 
method that is most often used by GIS analysts. It employs 
the Tobler’s First Law of Geography by estimating 
unknown measurements as weighted averages over the 
known measurements at nearby points, giving the greatest 
weight to the nearest points [40]. The general equation for 
IDW method is shown in equation (1): 

                                                        
Where Z0 is the estimated value at point 0, Ziis the Zvalue 
at known point i, diis the distance between point iand 
point 0, n is the number of known points used in 
estimation, and k is the specified power which controls the 
degree of local influence [38]. 
 

 

D.  Global Polynomial (GP) Interpolation 
 

GP interpolation simply uses multiple regression 
methods on all of the data. A response or trend surface is 
fitted to the x-and y-coordinates, which are the covariates. 
A first-order Global Polynomial (linear) fits a single plane 
through the data as shown in equation (2): 

Z (Xi, Yi) = β0 + β1Xi + β2Yi + ε (Xi,Yi)           (2) 

Where Z (Xi, Yi) is the datum at location (Xi, Yi), βiare 

parameters,and ε (Xi, Yi) is a random error. A second-

order Global Polynomial (quadratic) fits a surface with a 
bend in it, allowing surfaces representing valleys; a third-
order Global Polynomial (cubic) allows for two bends; and 
so forth, up to a 10 are allowed in Geostatistical Analyst 
[36]. 

 
E. Local Polynomial (LP) Interpolation 

 
As with global polynomials a least square polynomial fit 

to the data is applied, with options for Order 1, 2 or 3 
equations.However, instead of fitting the polynomial to the 
entiredataset it is fitted to a local subset defined by a 
window. Thesize of this window needs to be large enough 
for a reasonablenumber of data points to be included in 
the process. Onefurther adjustment is made to this 
procedure — a measure ofdistance-based weighting is 
included, so the least squaresmodel is in fact a weighted 
least squares fit. The weights arecomputed using a power 
function of distance as a fraction ofthe window size. The 
simplest case is where the movingwindow is a circle with 
radius R. If the distance between gridpoint (Xi, Yi ) and a 
data point (x,y) within the circle is denoteddi, then the 
weight wiis given by equation (3) and the leastsquares 
procedure then involves minimizing the expression given 

by equation (4)： 

 
                                                                        (3) 

 
 
                                                                        (4) 

 
Where p is a user definable power and if p=0 all the 
weights are 1. 
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F. Geo Statistical Methods 
 

Geo statistical interpolation methods create surfaces 
incorporating the statistical properties of the measured 
data. These techniques produce not only prediction 
surfaces but also error or uncertainty surfaces, giving the 
analyst an indication of how good the predictions are. 
Many methods are associated with geostatistics, but all are 
in the Kriging family. Kriging assumes that the spatial 
variation of an attribute is neither totally random 
(stochastic) nor deterministic. Instead, the spatial 
variation may consist of three components: a spatially 
correlated component, variation representation of the 
regionalized variable in the form of a “drift” or structure 
that represents a trend; and a random error term. The 
interpretation of these components has led to 
development of different Kriging methods for spatial 
interpolation. In this study, Ordinary and Universal Kriging 
was used. 

 
G. Ordinary Kriging 

 
Assuming the absence of a drift, Ordinary Kriging (OK) 

focuses on the spatially correlated component and uses the 
fitted semivariogram, a diagram relating the semivariance 
to the distance between sample points used in Kriging, 
directly for interpolation. The estimator of ordinary 
Kriging is given by equation (6): 

 

Z*(x_0) = ∑_(i=1)^n▒λ_(i  ) Z (x_i)          (6) 

Where Z*(x0) is the estimate value at x0, Z(xi) is the 

measure value at the xiand λiis the weight assigned for 

the residual of Z(xi) [41]. 
 

H. Universal Kriging 
 

Universal Kriging (UK) assumes that the spatial 
variation in z values has a drift or a trend in addition to the 
spatial correlation between the sample points. By 
definition of the drift component, the expected value m(x) 
of z(x) at point z is given by equation (7) and the estimator 
of universal Kriging is given by equation (8) [41]: 

 

E [Z (χ)] = m (χ)                                 (7) 

Z*(x_0) = ∑_(i=1)^n▒λ_(a  )  Z_(a  )        (8) 

Where nthe number of is available sampling data, Z*(x0) is 
the estimate value, Zais the measured value at sampling 

point a(a = 1,....,n) , and λais the weighting coefficient, 

which is calculated with unbiased and minimum error 
variance. 
 
 

I. Cross-Validation 
 

Cross-Validation was used to evaluate the performance 
of each interpolation method. It is one of the most 
commonly used statistical techniques for comparing 
interpolation methods. Cross-Validation compares the 
interpolation methods by repeating the following 
procedure for each interpolation method to be compared 
[44] (1) Remove a known point from the data set, (2) Use 
the remaining points to estimate the value at the point 
previously removed, and (3) Calculate the predicted error 
of the estimation by comparing the estimated with the 
known value. After completing the procedure for each 
known point, two common diagnostic statistics, Root Mean 
Square Error (RMSE) and the standardized RMSE, are 
calculated to assess the accuracy of the interpolation 
method as shown in equations (9) and (10): 

RMSE =  
 

 
         

                      (9) 

 
Standardized RMSE = RMSE/S                     (10) 
Where Ziand Zare the measured and the estimated value at 
the sampling point i(i=1,2,...n) ; n is the number of values 
used for the estimation; and S is the standard error. The 
RMSE statistic is available for all exact local methods, but 
the Standardized RMSE is only available for Kriging 
because the variance is required for computation. A better 
interpolation method should yield a smaller RMSE and a 
better Kriging method should yield a smaller RMSE and 
aStandardized RMSE closer to 1 [38]. 
 

IV. RESULTS AND DISCUSSION 
 

Mean Monthly Precipitation for two selected months 
(Jun and October) as representatives of the two monsoon 
seasons (South West Monsoon and South East Monsoon) in 
Selangor was interpolated in turn using five GIS based 
interpolation techniques (IDW, LP, GP, OK, UK). Fig. 3 
shows samples of interpolated surfaces using different 
methods. RMSE (for the six methods) and Standardized 
RMSE (for only OK and UK) were then calculated using 
Cross-Validation as shown in Fig. 4. The minimal RMSE are 
obtained by OK and UK, which have almost the same RMSE 
and Standardized RMSE for all months. Thus this method 
is the optimal method for interpolating mean monthly 
precipitation in the study area. Similar results were 
obtained from [42], [43],  [21], [44] and [45] where their 
studies found that interpolation using OK and UK were the 
optimal method in addressing the precipitation of their 
studied area.  
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 Fig. 4. Root mean square error (rmse) for the five interpolated methods and standardized rmse  
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Fig. 3. Sample of the mean monthly precipitation (mm) of 1970 – 2010 in Selangor for the five interpolation 

methods used 
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V. CONCLUSION 

 
Ordinary Kriging and Universal Kriging are themost 

optimal methods for interpolating mean monthly 
precipitation in Selangor. This conclusion is based on 
available precipitation data recorded 21 rain gauges 
stations representing two main catchments; Langat and 
Selangor during the period (1970-2010), which were in 
turn interpolated using five GIS-based   interpolation  
methods. Cross-Validation was used to compare the 
various interpolation methods. Diagnostic Statistic 
indicated that Ordinary and Universal Kriging had the 
smallest RMSE and thus they are considered the optimal 
methods for interpolating precipitation in Selangor. 
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