
Journal of Advances in Technology and Engineering Research JATER
2020, 6(1): 37-45

PRIMARY RESEARCH

Attackdet: Combining web data parsing and real-time

analysis with machine learning

Zeydin Pala 1*, Musa Şana 2

1 Department of Computer Engineering, Muş Alparslan University, Muş, Turkey

2 Department of Pentest of ADEO Security, Ankara, Turkey

Keywords Abstract

Machine learning

Real-time processing

Asynchronous programming

HTTP protocol

Websocket

Received: 8 September 2019

Accepted: 9 November 2019

Published: 12 February 2020

In this study, the web traf􀅫ic was analyzed via machine learning (ML) support, and incoming traf􀅫ic was visualized

after real-time classi􀅫ication, prioritizing stability and performance, which are indispensable for real-time appli-

cations. Websocket technology was used for instantaneous and fast data transfer. Processes may be blocked due

to asynchronous operating structure when Hyper-Text Transfer Protocol (HTTP) traf􀅫ic is intensive. Synchronous

operation of the systemwas causing both delays and negatively affecting the ef􀅫iciency of the application. To over-

come this bottleneck, the developed application used asynchronous libraries instead of synchronous ones. The

essential features of the study were the analysis of HTTP packets captured in real-time, classifying the packets ac-

cording to whether they are safe or suspicious using ML algorithms, and real-time display of the acquired results.

In this way, incoming traf􀅫ic was classi􀅫ied smartly without getting lost in thousands of log 􀅫iles. A success rate of

96.49%was attained using the logistic regression model, which is very successful in classi􀅫ication.

© 2020 The Author(s). Published by TAF Publishing.

I. INTRODUCTION

Since the advent of computers in the middle of the last cen-

tury, our lives have become more and more computerized,

socialized and digitalized. Since computer systems are used

in different business types for production, more data is con-

tinuously produced and collected, especially in retail and 􀅫i-

nance. Whatever the source (commercial, scienti􀅫ic or per-

sonal) smart people are 􀅫inding new ways to use this data

and turn it into a useful product or service. Machine learn-

ing (ML) plays a critical role in this transformation. ML is

now the driving force of arti􀅫icial intelligence. After the dis-

appointment of logic-based programmed expert systems in

the 1980s, it revitalized the 􀅫ield and achieved essential re-

sults [1]. ML can be used to classify web traf􀅫ic ef􀅫iciently

[2] and intelligently [3]. In other words, web security can

be provided more effectively with the help of ML [4, 5]. In

this area, manyML technical models are presented bymany

researchers topreventmalicious traf􀅫ic 􀅫lows in the Internet

of Things (IoT) network [6]. ML is also used extensively in

time series prediction processes [7, 8, 9, 10, 10, 11].

Today, there are many applications which display web traf-

􀅫ic in real-time [12, 13]. Unfortunately, the use of such a dis-

play which may be bene􀅫icial up to a certain degree, falls

short of meeting the desired demands. It is expected to

check in real-time and without any compromise on perfor-

mance whether the incoming or outgoing web traf􀅫ic is sus-

picious or not real-time. However, usingML for this purpose

takes us one step farther. Designing a system that classi-

􀅫ies web traf􀅫ic smartly by considering the shortcomings in

current applications and displays the results graphically in

real-time is the primary objective of this study.

Incoming HTTP traf􀅫ic was captured in this study by way of

the application layerwhichwas afterward displayed in real-

time. Packets of captured HTTP traf􀅫ic are sent to a model

trained via ML and the inferences made by the machine are

evaluated. In otherwords, the packets in the traf􀅫ic are clas-

si􀅫ied via pre-trained ML model, after which they are dis-

played in real-time using a web application. It is thus easier

*Corresponding author: Zeydin Pala
†email: z.pala@alparslan.edu.tr

The Author(s). Published by TAF Publishing. This is an Open Access article distributed under a Creative Commons Attribution-NonCommercial-

NoDerivatives 4.0 International License

http://crossmark.crossref.org/dialog/?doi=10.20474/Jater-6.1.4&domain=pdf
z.pala@alparslan.edu.tr
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

2020 Z. Pala, M. Şana – Attackdet: Combining web data parsing 38

andmore effective to visually detect suspicious activities or

harmful interventions. The web-based application can be

used easily in all operating systems regardless of the plat-

form and it can be con􀅫igured rapidly. Besides, analyses are

more comfortable and easier thanks to graphic support.

Parsing http packets in web traf􀅫ic and real-time classi􀅫i-

cation of the results acquired in combination with support

fromML is considered an innovation of the study. In this re-

gard, the study shall make signi􀅫icant contributions to the

literature.

II. BACKGROUND

As shown in Figure 1, Attackdet is comprised of three basic

modules as an application that is the subject of the study.

The 􀅫irst module sniffs and parses the network traf􀅫ic in

the background. The second module sends the parsed data

to the ML server. Whereas the third module displays in a

web application the data for the parsed network packets

alongwith the results classi􀅫ied throughML. In general, two

servers run in the backgroundwhich are theweb server and

the ML server.

Fig. 1. General system architecture [14]

A. Libraries and Technologies used in the Developed

Application

1) Python programming language and the Tornado library

developed in this language have been used in th is applica-

tion's back-end. Processesmaybe carriedoutwithout being

blocked since this library works asynchronously.

2) Another essentialvital library used in this study was

scapy. It is a very robust library that enables us to carry out

all network based processes such as generating the desired

packets in all network layers [15]. All incoming to and out-

going traf􀅫ic to or from the server were thus sniffed, after

which they were subject to parsing. The data acquired af-

ter parsing were submitted to the web application viaWeb-

Sockets.

3) Scikit-learn library was used in the ML side. Thanks

to the Term Frequency–Inverse Document Frequency (TF-

IDF) class in this library, the text expressions were digital-

ized in accordance with the TF-IDF model [16]. Therefore,

it was transformed into a matrix form that can be used by

classi􀅫ication algorithms.

4) Pandas library was used to carry out easier operations

on the dataset.

5) Pickle librarywas used for recording themodel to ensure

that the model is not re-trained several times after the 􀅫irst

training after which this model was used for the required

operations.

6) Javascript was used intensively in the web application

side of the project. On the Python side, JavaScript was used

to fetch the data submitted over the websocket thanks to

the tornado library. Required graphs were generated to vi-

ISSN: 2414-4592

DOI: 10.20474/jater-6.1.4

39 J. adv. tec. eng. res. 2020

sualize the incoming data thanks to the chart.js, one of the

Javascript libraries.

7) In addition, streaming plug-inwas used for the chart.js li-

brary since incoming data were stream data. Thus, stream-

ing data transferwas also displayed graphically in real-time.

B. Hypertext Transfer Protocol (HTTP)

Signi􀅫icant work has been done in recent years on the char-

acterization of http traf􀅫ic [17]. HTTP is a stateless re-

quest/response protocol. This structure of the http proto-

col is not suited for web applications that in a signi􀅫icant in-

teraction. A new connection to the server would be gener-

ated for each request before Http 1.1. Thanks to Http 1.1,

it is now possible to use a single TCP connection for multi-

ple request/response pairs. This new structure is known as

http-keep alive or http persistent connection. Http is also a

half-duplex, which is a single directional protocol [18].

When considered from this perspective, the http protocol is

based on straightforward elementary straightforward rules

(but includes small complex systems for the execution of

these rules). Fundamentally, http is based on client and

server architecture. There is one response for each request

in this architecture.

The majority of the protocols that have been developed

since the time that the internet started spreading globally

do not fully meet our needs in many aspects. Therefore,

large technology companies the academic community is try-

ing by way of innovations, arrangements and additions to

take the current protocol up to a level that may meet the

demands.

In the beginning, data transfers viaHTTP (for instance, sur􀅫-

ing a web page) resulted in a lot of undesired traf􀅫ic in large

systems. Because it was known that more than half of the

systems traf􀅫ic was due to the re-request of the unchanging

data from the server. For instance, the whole page had to

be refreshed to see a minor change in only a small part of

the web page. Meaning that the whole page was requested

from the server once again. Even though the change on the

web page resulted in traf􀅫ic that is less than a kilobyte, re-

freshing the whole page resulted in traf􀅫ic that reached up

tomegabytes. Themethods developed for solving this issue

have been explained below from past to present.

At 􀅫irst, a method known as polling was used to solve this

issue. In this method, the client sent a request to the server

at certain intervals. For instance, a request was sent to the

server every 30 seconds, and thus it became possible to

learn with 30 second delays whether there are any changes

in the data or not. However, this structure had its disadvan-

tages. Increasing the number of requests to bemade at spe-

ci􀅫ic periods in order to decrease the delay time also meant

increasing traf􀅫ic. Sending a request every 3 seconds gen-

erated undesired traf􀅫ic even when there was no change in

the system.

Thousands of unnecessary requestswere sent in the polling

method even when data did not change for hours. This

caused signi􀅫icant issues especially for larger systems.

Long-polling structure was developed in order to improve

this system. In this system, when a request is made from

the client to the server for checking whether there is any

change in the data or not, the server holds the request and

waits for the information to be available if there is no change

in any data instead of sending an empty response as in data

and once the information becomes available, a complete

response is sent to the client. This was relatively better

in comparison with the polling method; however, the load

would increase signi􀅫icantly on the server side. Even this

method was still based on the request and response archi-

tecture and the connection operated as half-duplex.

C. Websockets

Efforts are made continuously to develop better systems

since the methods above for developing real-time applica-

tions areproblematic. This processwill repeat continuously

as the demands change or improve. Because they may pro-

vide ideal solutions to our needs in many areas. Instant

messages can be used everywhere from stock exchange to

wherever there is a need for instantaneous data transfer.

Websockets have signi􀅫icant characteristics that set them

apart from the others [19].

First of all, the server cannot notify the clientwhen there is a

change in the server; howeverwe are noti􀅫ied of this change

onlywhen the client sends a request to the server. Websock-

ets transform the half-duplex communication between the

server and the client to full-duplex. Thus, it could be pos-

sible to transfer data from the client to the server and vice

versa. The server may send data to the client even when

there is no request from the client side. Because the half-

duplex structure ofWebSockets has not been taken as basis.

Such a structure has been able to provide themost practical

solution to many issues. The client does not send unnec-

essary and continuous requests to the server, and methods

that increase the server's workload are not used. The re-

lated methods are triggered in case of a change in data, and

this information is sent to the client. Websockets result in

a traf􀅫ic expressed in bytes that can provide real-time data

transfer with meager traf􀅫ic even in the largest systems.

ISSN: 2414-4592

DOI: 10.20474/jater-6.1.4

2020 Z. Pala, M. Şana – Attackdet: Combining web data parsing 40

D. Synchronous and Asynchronous Programming

The codes of the software are executed in order in syn-

chronous programming. The next step cannot start before

the previous step is completed. Synchronously developed

software that carries out disk, network input/output oper-

ations end their tasks very late. This is because the follow-

ing code blocks cannot be executed before operations such

as reading data from the disk or recording data to the disk

are completed. Thus, the waiting time results in signi􀅫icant

issues after some time. For instance, all other operations

at that time are blocked when asynchronous web server is

going to respond to a request meaning that no other opera-

tions are allowed. It is very fast to send a request from the

client to the server. However, the main issue here is that a

delay occurs after the request is sent before the response is

received. This is the underlying reason why such software

is late in responding.

There is a high probability that the systemwill be out of ser-

vice during intensive operations in large systems if there is

any synchronous software involved. Even though it changes

from system to system, there will be requests sent by sev-

eral hundred users at the same time intervals. The server is

blocked for several milliseconds if it is responding to an in-

dividual request. It takes on the next request after respond-

ing to the 􀅫irst. It continues to operate in this manner. This

blockage issue will not cause any problems in systems with

a small number of users. However, the delays will add up

to seconds and even minutes in large systems when thou-

sands of requests are made simultaneously thereby mak-

ing the system unable to operate. Asynchronous program-

mingmodelwasdeveloped to solve this issue [20]. With this

model, reading/writing data or receiving/sending packet

may take place more rapidly without being blocked.

Indeed, processes take a very little amount of time thanks

to asynchronous libraries that operate with a single thread

and a more signi􀅫icant number of processes can be per-

formed in the same amount of time. An asynchronous appli-

cation performs other processeswhen it will send a request

to a remote server instead of waiting for the response. Af-

ter receiving the remote server's response, it returns back

and continues from where it left off. In the asynchronous

model, if datawill be recorded on the drive or if a packetwill

be sent and received in network processes, other processes

are performed until the response is received following the

I/O command. This indicates that the next code blocks may

be performed before 􀅫inishing off with the previous code

block. When the response is received from the related lo-

cation (disk, network), a noti􀅫ication is sent via the callback

method indicating that the process is completed. An inter-

rupt is sent. Upon receiving this interrupt, the software

starts processing the received response. Thus, the waiting

time in reading/recording processes is put into use in some

other processes. Because usually there is no need for the

CPU in such processes. The same thread can perform other

processes until the response is receivedwhile the processes

are run via DMA.

III. EXPERIMENTAL RESULTS AND DISCUSSION

There is a need for a trained system in order to apply theML

models [9] on systems that operate in real-time. Because it

may be necessary to make instantaneous decisions regard-

ing real-time data.

In this project, term frequency-inverse document frequency

(TF-IDF)was used, which is used frequently in text process-

ing and natural language processing. All URL addresses in

the dataset were digitalized by way of TF-IDF since the ma-

chine learning model will make decisions via Uniform Re-

source Locator (URL).

After this stage, the model was serialized and recorded as

binary. Thus, the issues encountered when running the

projectmore than oncewere eliminated such as training the

system repeatedly and waiting time. The model trained at

the start was recorded which was then imported directly in

the subsequent runs.

Logistic Regression (LR)model Islam et al. [21] was used in

this study which is among the favorite models of machine

learning.

Contrary to its name, LR is not a regression model. It is a

classi􀅫ication model. It is also a classi􀅫ication model that is

frequently used in the industry that is easy to usewith quite

a good performance on linearly classi􀅫iable classes.

The idea behind the LR model which is a probabilistic

model, is based on the logit function. The logit function is

simply based on the probability ratio [22]:

logit(p) = log
p

1− p
(1)

Here, p denotes the positive probability. Logit function

takes on values that vary between the interval of 0 and 1

and transforms them into real numbers:

logit(p(y = 1 | x)) = w0x0 + w1x1 + wmxm =

n∑
i=0

wmxm = wTx (2)

ISSN: 2414-4592

DOI: 10.20474/jater-6.1.4

41 J. adv. tec. eng. res. 2020

Here, p(y = 1 | x), x represents the conditional probabil-
ity for which the property vector has been given and that

belongs to class-1. It is the logistic or the sigmoid function

that estimates the probability of a certain sample to belong

to a certain class that is the inverse form of the logit func-

tion:

Φ(v) =
1

1 + e−v
(3)

Here, v represents the system input as the linear combina-

tion of theweights and inputs and can be calculated as such:

v = wTx = w0x0 + w1x1 + · · ·+ wmxm (4)

The URL dataset acquired from the Kaggle website [23]

was used in machine learning. The dataset with a sin-

gle input property vector and a single output vector con-

tained 420.464 records. As shown in Figure 2, the values of

newton-cg, lbfgs, liblinear, sag and saga were used respec-

tively in the LRmodel for the solver parameter. In this case,

success rates of 96.462%, 96.496%, 96.462%, 96.462%and

96.462% were acquired respectively. Better results were

obtained with the lbfgs value of the solver parameter even

if the difference was minor. In addition, as shown in Fig-

ure 3, the same results were obtained with a success rate

of 96.21% as a result of the training carried out by varying

the newton-cg and max_iter parameters between 200 and

1600.

Fig. 2. Solver parameter values for system performance [14]

Fig. 3. Max iter parameter values for system performance [14]

ISSN: 2414-4592

DOI: 10.20474/jater-6.1.4

2020 Z. Pala, M. Şana – Attackdet: Combining web data parsing 42

A better success rate of 96.92% was attained by using the

Decision Tree model on the same dataset which is quite

slower than the LR.

As shown in Table 1, the classi􀅫ication performances ob-

tained in our study are better than the results obtained from

previous studies.

TABLE 1

COMPARISON OF OVERALL ACCURACY FOR CLASSIFICATION

Reference Paper Dataset Methodology and Classi􀅫ication Average

Kurt et all. [24] Coronary artery disease LR (91.8%)

Abu-Nimeh et all. [25] Spam email database LR (95.11%)

Our study The URL dataset LR (96.21%), Decision Tree (96.92%)

Figure 4 shows all of the real-time http traf􀅫ic that was

received while the system was operating, while Figure 5

shows the suspicious http traf􀅫ic analyzed in real-time via

machine learning support.

Fig. 4. The real-time http traf􀅫ic [14]

Fig. 5. The suspicious http traf􀅫ic analyzed in real-time via machine learning support [14]

IV. FUNDAMENTAL DIFFICULTIES IN THE STUDY

There is no doubt that the most fundamental problem in

real-time developed applications [26, 27, 28] is to present

the properly processed data via user-friendly interfaces.

However, things may get quite complicated at this stage if

architecture is not known well. We faced several main is-

sues at this point, which gave us a hard time [29].

The 􀅫irst dif􀅫icultywas sending the parsed packets captured

by way of snif􀅫ing the network instantaneously [30, 31] to

the web application and displaying them as graphs. Be-

cause no other process can be performed when the net-

work is sniffed. Even though it seems as if this problem

ISSN: 2414-4592

DOI: 10.20474/jater-6.1.4

43 J. adv. tec. eng. res. 2020

can be solved by way of multiprocessing or multithreading,

an unexpected situation developed. The probability of fac-

ing deadlock and race conditions was quite high since the

threads operate in the same process space and many pro-

cesses will take place in the same memory space when the

number of sniffed packets increases.

The reason for not choosing Multiprocessing was that it

would complicate things further, resulting in performance

problems. Even though it seemed quite logical and high-

performance to work with two processes, it could not solve

our issues properly since it would not be possible to syn-

chronize the processeswhen a single processwas to be per-

formed. So therewas only one other option left. The project

would have to be developed asynchronously. Thus, bet-

ter results would be acquired thanks to an asynchronously

operating structure over a single thread. Therefore, the

project was developed asynchronously.

The second problemwas waiting for the web application to

process the data while sending the packets captured when

the network is sniffed to the web application. In other

words, the issue was that a second network packet was not

processed before the response is received after the process-

ing of the 􀅫irst received network packet.

Such processes operate synchronously as a matter of ar-

chitecture. Synchronous processes operate with one re-

quest, one response method. The second request cannot

be sent until the response is received for the 􀅫irst request

sent. Here, the second main issue was also resolved by us-

ing asynchronous programming.

Python is an interpreted language and due to their nature,

interpreted languages have to repeat all processes from the

start when operated. Time is signi􀅫icant for a real-time ap-

plication. It was a major issue that the system had to spend

some time to re-train itself at each run. The solution to this

issue was recording the serialized model in binary format

which was generated after the training of the system using

the training data. Thus, there was no need for an additional

waiting time for re-training the system since it would oper-

ate using the recorded model.

V. CONCLUSION

In this study, scapy, sklearn and pickle libraries were used,

which are used frequently for ML in Python programming

language. Websocketswere utilized in order to analyzeweb

traf􀅫ic faster and Asynchronous programming was used to

prevent delays. Two critical metrics of stability and per-

formance were given priority for the real-time operation

of the Attackdet application that combines data separation

and real-time data classi􀅫ication. Thus, it would be possible

to get successful results even with the weakest hardware.

For this purpose, an asynchronous server was developed

using an asynchronous library. Thus, we tried to prevent

blocking even in cases of high HTTP traf􀅫ic. Logistic regres-

sion model from among the machine learning models was

preferred due to its speed and popularity and a quite satis-

factory classi􀅫ication success rate of 96.49% was obtained

with the URL dataset.

The dataset used for the proposed system is not long

enough. Therefore, it does not seem possible to analyze all

web content with this. For the proposed system to analyze

web traf􀅫ic ef􀅫iciently in anypublic institution, a larger-sized

training dataset should be preferred. Also, the server that

will do this job onlinemust have perfect hardware and soft-

ware con􀅫iguration.

REFERENCES

[1] E. Alpaydin,Machine Learning: The New AI. New York, NY: MIT Press, 2016.

[2] S. K. Gouda et al., ``Smart traf􀅫ic management system using iot and machine learning approach,'' 2020. [Online].

Available: https://bit.ly/3hI91eF

[3] O. Salman, I. H. Elhajj, A. Kayssi, and A. Chehab, ``A review on machine learning based approaches for internet traf-

􀅫ic classi􀅫ication,'' Annals of Telecommunications, vol. 75, no. 11, pp. 673-710, 2020. doi: https://doi.org/10.1007/

s12243-020-00770-7

[4] M. Amrollahi, S. Hadayeghparast, H. Karimipour, F. Derakhshan, and G. Srivastava, ``Enhancing network security via

machine learning: Opportunities and challenges,'' in Handbook of Big Data Privacy. Berlin, Germany: Springer, 2020.

[5] O. A. Osahenvemwen andO. F. Odiase, ``Effectivemanagement of handover process inmobile communication network,''

Journal of Advances in Technology and Engineering Studies, vol. 2, no. 6, pp. 176-182, 2016. doi: https://doi.org/10.

20474/jater-2.6.1

[6] M. Sha􀅫iq, Z. Tian, A. K. Bashir, X. Du, and M. Guizani, ``Corrauc: A malicious bot-iot traf􀅫ic detection method in iot

network usingmachine learning techniques,'' IEEE Internet of Things Journal, vol. 57, no. 5, pp. 56-70, 2020. doi: https:

//doi.org/10.1109/JIOT.2020.3002255

ISSN: 2414-4592

DOI: 10.20474/jater-6.1.4

https://bit.ly/3hI91eF
https://doi.org/10.1007/s12243-020-00770-7
https://doi.org/10.1007/s12243-020-00770-7
https://doi.org/10.20474/jater-2.6.1
https://doi.org/10.20474/jater-2.6.1
https://doi.org/10.1109/JIOT.2020.3002255
https://doi.org/10.1109/JIOT.2020.3002255

2020 Z. Pala, M. Şana – Attackdet: Combining web data parsing 44

[7] T. Shelatkar, S. Tondale, S. Yadav, and S. Ahir, ``Web traf􀅫ic time series forecasting using ARIMA and LSTM RNN,'' in ITM

Web of Conferences, California, CA, 2020.

[8] Z. PALA and O. O􀂫 zkan, ``Arti􀅫icial intelligence helps protect smart homes against thieves,'' Dicle University Faculty of

Engineering Journal of Engineering, vol. 11, no. 3, pp. 945-952, 2011. doi: https://doi.org/10.24012/dumf.700311

[9] Z. Pala and R. Atici, ``Forecasting sunspot time series using deep learning methods,'' Solar Physics, vol. 294, no. 5, pp.

50-34, 2019. doi: https://doi.org/10.1007/s11207-019-1434-6

[10] Z. Pala, ``Using forecasthybrid package to ensemble forecast functions in the r,'' 2019. [Online]. Available:

https://bit.ly/3nfPWl2

[11] H. Unluk and Z. Pala, ``Prediction of monthly electricity consumption used in Mus Alparslan university complex by

meansof classical and deep learning methods,'' in Conference on Data Science, Machine Learning and Statistics, Van,

Turkey, 2019.

[12] M. R. Islam, T. K. Koirala, and F. Khatun, ``Network traf􀅫ic analysis and packet snif􀅫ing using UDP,'' in Advances in Com-

munication, Devices and Networking. New Jersy, NJ: Springer, 2018.

[13] N. Ugtakhbayar., B. Usukhbayar, S. H. Sodbileg, and J. Nyamjav, ``Detecting TCP based attacks using data mining algo-

rithms,'' International Journal of Technology and Engineering Studies, vol. 2, no. 1, pp. 1-4, 2016. doi: https://doi.org/

10.20469/ijtes.2.40001-1

[14] P. Joshi, J. Hearty, B. Sjardin, L. Massaron, and A. Boschetti, Python: Real World Machine Learning. Birmingham, UK:

Packt Publishing Ltd, 2016.

[15] R.Montante, ``Using scapy in teachingnetworkheader formats: Programmingnetworkheaders fornon-programmers,''

in Proceedings of the 49th ACM Technical Symposium on Computer Science Education, Scotland, UK, 2018.

[16] A. Dhar, N. S. Dash, and K. Roy, ``Application of TF-IDF feature for categorizing documents of online bangla web text

corpus,'' in Intelligent Engineering Informatics. New York, NY: Springer, 2018.

[17] P. Jiang, F. Liu, H.Wang, and C. Li, ``Characterizing http traf􀅫ic ofmobile internet services in provincial network,'' in Sixth

International Conference on Intelligent Human-Machine Systems and Cybernetics,Rome, Italy. IEEE, 2014.

[18] T. M. Tukade and R. Banakar, ``Data transfer protocols in IoT—An overview,'' International Journal of Pure and Applied

Mathematics, vol. 118, no. 16, pp. 121-138, 2018.

[19] J. Newmarch, Network Programming with Go: Essential Skills for Using and Securing Networks. California, CA: Apress,

2017.

[20] R. Von Hanxleden, T. Bourke, and A. Girault, ``Real-time ticks for synchronous programming,'' in Forum on Speci􀅲ication

and Design Languages (FDL),New Dehli, India, 2017.

[21] S. Chatterjee and A. S. Hadi, Regression Analysis by Example. Hokoben, NJ: John Wiley & Sons, 2015.

[22] S. Raschka, Python Machine Learning. Oxford, UK: Packt Publishing LTD, 2015.

[23] J. N. Van Rijn, V. Umaashankar, S. Fischer, B. Bischl, L. Torgo, B. Gao, P. Winter, B. Wiswedel, M. R. Berthold, and J. Van-

schoren, ``A rapidminer extension for open machine learning,'' in RapidMiner Community Meeting and Conference,Cal-

ifornia, CA, 2013.

[24] I. Kurt,M. Ture, andA. T. Kurum, ``Comparingperformances of logistic regression, classi􀅫ication and regression tree, and

neural networks for predicting coronary artery disease,'' Expert Systems with Applications, vol. 34, no. 1, pp. 366-374,

2008. doi: https://doi.org/10.1016/j.eswa.2006.09.004

[25] S. Abu-Nimeh, D. Nappa, X. Wang, and S. Nair, ``A comparison of machine learning techniques for phishing detection,''

in Proceedings of the Anti-Phishing Working Groups 2nd Annual E-Crime Researchers Summit, Pittsburgh, PA, 2007.

[26] J. Kim, E.-Y. Park, B. Park, W. Choi, K. J. Lee, and C. Kim, ``Towards clinical photoacoustic and ultrasound imaging: Probe

improvement and real-time graphical user interface,'' Experimental Biology and Medicine, vol. 245, no. 4, pp. 321-329,

2020. doi: https://doi.org/10.1177/1535370219889968

[27] T. Ahmad and H. Chen, ``A review on machine learning forecasting growth trends and their real-time applications in

different energy systems,'' Sustainable Cities and Society, vol. 54, pp. 102-110, 2020. doi: https://doi.org/10.1016/j.

scs.2019.102010

[28] L. Mishra, S. Varma et al., ``Performance evaluation of real-time stream processing systems for internet of things ap-

plications,'' Future Generation Computer Systems, vol. 113, pp. 207-217, 2020. doi: https://doi.org/10.1016/j.future.

2020.07.012

ISSN: 2414-4592

DOI: 10.20474/jater-6.1.4

https://doi.org/10.24012/dumf.700311
https://doi.org/10.1007/s11207-019-1434-6
https://bit.ly/3nfPWl2
https://doi.org/10.20469/ijtes.2.40001-1
https://doi.org/10.20469/ijtes.2.40001-1
https://doi.org/10.1016/j.eswa.2006.09.004
https://doi.org/10.1177/1535370219889968
https://doi.org/10.1016/j.scs.2019.102010
https://doi.org/10.1016/j.scs.2019.102010
https://doi.org/10.1016/j.future.2020.07.012
https://doi.org/10.1016/j.future.2020.07.012

45 J. adv. tec. eng. res. 2020

[29] A. Gupta, ``Analysis of real-time big data: its applications and challenges,'' Journal of Data Mining and Management,

vol. 1, no. 2, pp. 1-10, 2016.

[30] M. Gregorczyk, P. Z􀂵 órawski, P. Nowakowski, K. Cabaj, and W. Mazurczyk, ``Snif􀅫ing detection based on network traf􀅫ic

probing and machine learning,'' IEEE Access, vol. 8, no. 5, pp. 149 255-149 269, 2020. doi: https://doi.org/10.1109/

ACCESS.2020.3016076

[31] D. Glăvan, C. Răcuciu, R. Moinescu, and S. Eftimie, ``Snif􀅫ing attacks on computer networks,'' Scienti􀅲ic Bulletin" Mircea

cel Batran" Naval Academy, vol. 23, no. 1, pp. 202-207, 2020. doi: https://doi.org/10.21279/1454-864X-20-I1-027

ISSN: 2414-4592

DOI: 10.20474/jater-6.1.4

https://doi.org/10.1109/ACCESS.2020.3016076
https://doi.org/10.1109/ACCESS.2020.3016076
https://doi.org/10.21279/1454-864X-20-I1-027

	Introduction
	BACKGROUND
	Libraries and Technologies used in the Developed Application
	Hypertext Transfer Protocol (HTTP)
	Websockets
	Synchronous and Asynchronous Programming

	EXPERIMENTAL RESULTS AND DISCUSSION
	 FUNDAMENTAL DIFFICULTIES IN THE STUDY
	CONCLUSION

