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To increase accuracy for dynamic detection obstacles, this paper presents a Kalman ilter observation error model

based on 77 GHz middle range radar (MRR). In recently, the vehicle equips advanced driver assistance system

(ADAS),which becomesmore popular. Among these, the accuracy of the obstacle information, such as distance, rel-

ative speed, and position, is the most important purpose. However, radar is one of the main detection sensors, but

its data transmission delay, includingmillimeter-wave relection, the analogy to digital signal conversion, and data

process, would inluence radar tracking correction. Therefore, algorithm of the proposed model adopts detection

time and a dynamic estimated model of an obstacle to compensate detection delay, such that the dynamic correc-

tion means error can be reduced. Next, the testing condition sets RTK-GPS as the real-world reference frame, the

experimental would be realized with the dynamic scene. According to the above results, when the target distance

closer 100 meter, our model's dynamic correction mean error was improved 59%, 74%, 78% during in 20kph,

40kph, and 60kph relatively speed, respectively.

© 2019 The Author(s). Published by TAF Publishing.

I. INTRODUCTION

In recent years, many automobile factories have been in-

vesting in the ADAS [1] development for manufacturing the

modern safety car. It is assembled with several systems,

such as Adaptive Cruise Control (ACC), Lane-Keeping Assis-

tance (LKA), Autonomous Emergency Braking (AEB), Lane

Change Assistance (LCA), and so on. According to the Soci-

ety of Automotive Engineers (SAE) speciication, this intel-

ligent system is called partial automation which simultane-

ously integrates more than one body control into executing

assistance operation based on the driving environment, but

thedriver is stillmainly observer so that it is classiied as the

second level. For precise control, the obstacle detection of

the environment is themost important information. There-

fore, the sensor which has detection range function, such

as ultrasonic, camera, lidar, and millimeter-wave radar, is

developed. However, the features of these sensors are dif-

ferent. For example, ultrasonic is a low-cost sensor, but it

does not appropriately detect long-range obstacles, which

are longer than 5 meters. Next, the camera not only can

detect over 50 meters but also cognate the type of obsta-

cle. Nevertheless, its detection ability is affected by night.

Then, the three-dimensional lidar can be operated day and

night, but its cost is higher than the other sensors. Rel-

atively, although millimeter-wave radar could not cognate

the obstacle, it has some advantages which include long-

range detection and all-day operation time. Besides, it can

obtainmore precise relative speed about obstacles than the

other sensors based on Frequency Modulated Continuous

Wave (FMCW) theorem. Therefore, it is one of the appro-

priate sensors which is responsible for long-range detec-

tion, tracking, andprediction of obstaclemovement inADAS

[2, 3, 4, 5, 6, 7, 8, 9, 10, 11].

Under the radar operating process, the antenna is used to

transmit millimeter waves and then receive a relection sig-

nal of obstacles. Next, the difference in time of the signal

back and forth is used to compute the obstacles information

which includes relative speed, distance, and angle. Among

these, during the period of radar sensing time, the latency

delaywould be generated [12, 13, 14], and a part of obstacle
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information could be lost during this delay time. It causes

that AEB system tracking precisely would be reduced. For

example, each 0.1-second delaymakes that any object infor-

mation cannot be provided to the systemwhilemoving 1.67

meters when a vehicle is driving at a speed of 60 kilometers

per hour. Besides, the signal point would generate drifting

ormissing by environment interference [15, 16]. Therefore,

the development of a reliable compensate algorithm for re-

building lost data is the most important issue.

Based on the Kalman ilter observation error model, a new

dynamic obstacle correction algorithm that is used to im-

prove radar tracking dynamic vehicle performance is pro-

posed in this paper. First, for iltering input data, the ob-

servation error model of the obstacle is designed based on

Kalman's theory [15, 17, 18]. Next, we analyze several de-

tection information pieces, such as the location and dynam-

ics of obstacle and detection time. According to the above

iltering and analysis results, we can compute the com-

pensation time of the detection of obstacle requirements

and then the detection accuracy of dynamic obstacles could

be improved. From experimental results, the AEB system

adopts the proposedmethod; the dynamic correctionmean

error of our model was improved by 59%, 74%, and 78% in

20kph, 40kph, and 60kph relative speed when the distance

of subject was closer than 100 meters, respectively.

The remainder of this paper is organized as follows: Section

2 shows the derivation method of the Kalman ilter and the

observation error model. Next, the procedure of detection

obstacle time analysis of the proposed architecture and its

dynamic correction method is introduced in Section 3. Fi-

nally, Section 4 presents the conclusions of this study.

A. Kalman Filter and Observation Error Model

Equations 1, 2, 3, 4, 5 are the equations for the Kalman ilter.

The estimated value for the previous point and the obser-

vation value for the current point are used to calculate the

estimated value of the minimum mean square error [19].

Observation error models with various distances are pro-

vided to make the output close to the real state. Details are

provided in the following:

x̂k|k−1 = Ax̂k−1|k−1 +Buk−1 (1)

Pk|k−1 = APk−1|k−1A
T +Q (2)

Kk = Pkk−1H
T
(
HPkk−1H

T +R
)−1

(3)

x̂k|k = x̂k|k−1 +Kk

(
Zk −H x̂k|k−1

)
(4)

Pk|k = (I −KkH)Pk|k−1 (5)

Considering Equation 1 for the Kalman ilter, the state of the

previous point
(
xk−1|k−1

)
is irst used to estimate the cur-

rent state
(
x̂k|k−1

)
, where A is the state-transition matrix

speciied in Equation 6, B is a control matrix, and u is the

control amount.

A =


1 ∆t 0 0

0 1 0 0

0 0 1 ∆t

0 0 0 1

 (6)

In Equation 2, Pk|k−1 is the covariance matrix of system er-

ror moving from the previous point to the current point, Q

is system noise, andAT is the transpose of A.

Equation 3 calculates the Kalman constantK , which can be

used tominimize the covariancematrix of systemerrorPk|k

in Equation 5. Concurrently, K also serves to compute the

estimate of the current state x̂kk and regulates the weights

for the observation value in Equation 4. That is, whenK is

large, the system believes that the observed value is greater

than the estimated value; when K is small, the system be-

lieves that the estimated value is greater than the observa-

tion. Additionally,H =

[
1 0 0 0

0 0 1 0

]
, and R is the ma-

trix of observation error. The covariance matrix of obser-

vation value R is a parameter in Equation 3 for adjusting

theKalman constantK . A dynamic observation errormodel

canbe establishedby analyzing observation error values for

various distances based on radar detection results (e.g., Fig-

ure 1). By adjusting thematrix of observation error in Equa-

tion 3 themore accurate value of the state x̂kk in Equation 4

and the smaller covariance matrix of system error Pk|k can

be obtained.
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Fig. 1. Analysis of radar error observation at different distances

B. Millimeter-Wave Radar Data Collection

Table 1 presents the basic performance of the millimeter-

wave radar used in this study. Two detection ranges of the

radar were used: short distance (60 m or below) and long

distance (200 m or below; Figure 2). GPS Real-Time Kine-

matic (GPS-RTK) was used as the real coordinate reference.

GPS-RTK can be used for real-time positioning with high

precision and is, therefore, suitable to serve as the ground

truth. The data collection locationwas an open area. Within

the radar detection range, no other obstacles were found

except for the target vehicle. GPS-RTK was installed in the

target vehicle (Figure 3). The millimeter-wave radar was

set at a ixed position and as the origin. The target vehicle

was located 5m in front of the radar and began to acceler-

ate and drive forward at a ixed speed. GPS-RTK data and

millimeter-wave radar data were simultaneously collected.

Some data are presented in Figure 4 and 5.

Fig. 2. Field of view of Radar detection range
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TABLE 1

77GHZ RADAR SPECIFICATIONS

Longest

Detection

Range

Nearest

Detection

Range

Field of View Speed Range Accuracy

Distance

Measuring

Speed

Accuracy

Cycle Time

200m 0.25m Far: ±9o

Close-up: ±9o

88kph∼265kph ±0.25m or

1.5%@ > 1m

±0.5kph 66mS

Fig. 3. GPS-RTK installation diagram

Fig. 4. Data collection of 20kph

Fig. 5. Data collection of 60kph
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C. Detection Time Analysis

According toFigure4 and5, the vehicle speedwaspositively

correlated with the error, which originated from detection

time. Therefore, the detection results should accord with

the equation of motion:

xi = xi−∆t + vt−∆t∆t+O
(
∆t2

)
(7)

where x is the position of the object, t is the current time,

and∆t is the detection time. Equation 8 can be derived by

substitutingRTKdistance and theKalman ilter observation

error model into Equation 7:

xRT x = xKal + vKai∆t

xRTX = [xRTX1xRTX2, · · · , xRTX ]
T

xKa′ = [xKa′1, xKa′2, · · · , xKa′n]
T

vKa′ = [vXa′1, vXa′2, · · · , vXa′n]
T

(8)

where xRRxi
, xKa′iz, vKa′i, i ∈ 1, 2, · · · , n denote the RTK

distance, Kalman distance, and Kalman velocity for Time

i respectively. Because radar and RTK both have detec-

tion errors, a solution for ∆t cannot be obtained directly

from Equation 8. Therefore, the least squares method [ 15]

should be used to obtain the optimal∆t.

min
∆t

(xRTK − (xKa′ + vKa′∆t)2) (9)

Finding an answer for Equation 8 is equivalent to inding an

answer for Equation 10.

min
∆t

(
n∑

i=1

(
xRTi

−
(
xKa′

i
+ vKa′

i
∆t
))2)

(10)

Let ci = xRTk
− xKai

, i ∈ 1, 2, . . . , n and expand Equa-

tion 10 to obtain Equation 11:

min
∆t

(
n∑

i=1

(
c2i − 2civKa′

i
∆t+ v2Kai

∆t2
))

(11)

Let f : R → R; Equation 12 is obtained:

f(∆t) =

n∑
i=1

(
c2i − 2civKali∆t+ v2Kali∆t2

)
(12)

Finding the minimum value of Equation 9 is equivalent to

inding a solution for Equation 13.

df(∆t)

d∆t
=

n∑
i=1

(
−2civKali + 2v2Kali∆t

)
= 0 (13)

Subsequently, the analysis results for 20, 40, and 60kph are

input (Figsures 6, 7, 8) to obtain a solution for∆t in Equa-

tion 13 Accordingly, Equation 14 can be obtained.

∆t ∼= 0.2649 (14)

Fig. 6. Analysis results

D. Dynamic Modiication Method

By using the aforementioned Kalman ilter and observation

error model, substituting the results derived from Equa-

tion 14 for detection time error analysis into Equation 7 for

object motion, and assuming that the current state is x̂ and

the detection states are x̃t and ṽt, Equation 15 can be ob-

tained.

x̂t = x̃t + ṽt∆t (15)

The analysis results are detailed in the next paragraph.

E. Dynamic Modiication Results

In this section, the method introduced in the previous

paragraph was used to compare the results of only using

the Kalman ilter observation error model at a dynamic

scene and the results of adding dynamic modiication. The

millimeter-wave radar was installed at a ixed position and

set as the origin. The target vehicle was initially in front of
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the radar (Figure 7 and simultaneously received radar and

GPS-RTK information. Figure 8 presents the X–Y cumula-

tive graph for millimeter-wave radar and GPS-RTK. In the

igure, the blue line represents RTK-GPS information, red

dots represent raw radar data, and green dots represent the

outcomes obtained by using the Kalman ilter. It is evident

that the errors in the horizontal directionweremodiied af-

ter using the proposed method.

Figure 9a presents the graph for 60-kph vertical distance

versus time. In the igure, the blue line represents RTK-GPS

vertical distance, red dots represent the results of applying

the Kalman ilter to the radar, and the black line represents

the relative speed. The results indicate that errors were ob-

served between radar outcomes andRTK-GPS outcomes. As

shown by the blue line in Figure 9a, as the vehicle speed in-

creased to 60 kph, the error reached approximately 4 m.

The orange line represents the results obtained from dy-

namic modiication. The error was less than 0.5 m within

the range of 100 m; the error did not exceed 1.5 m within

the range of 100–200 m.

Figure 9b presents the graph for 40-kph vertical distance

versus time. In the igure, as the vehicle speed increased

to 40 kph, the error without dynamic modiication was ap-

proximately 2.5 m. After dynamic modiication, the error

was less than0.8mwithin the rangeof 100manddidnot ex-

ceed 2.2 mwithin the range of 100–200. Figure 9c presents

the graph for 20-kph vertical distance versus time. In the

igure, as the vehicle speed increased to 20 kph, the error

was approximately 2 m without dynamic modiication; fol-

lowing dynamic modiication, the error was less than 0.6

within the range of 100mand did not exceed 2mwithin the

range of 100–200 m after deducting four peak values. Fig.

10 presentsmore results. In the igure, the 100-mblack line

represents the timewhen the target reached 100m. The re-

sults indicated that at thedynamic sceneofmediumor short

distance (within the range of 100m), dynamicmodiication

could effectively reduce the detection errors for vertical dis-

tance. For a long distance (100mor above), radar detection

errors (distance times 1.5%) induced large errors; however,

some errors can still be reduced.

Fig. 7. Analysis results

Fig. 8. X-Y cumulative graph of 60kph dy-

namic scene

Fig. 9. Dynamic scene time to distance (t-y)

Table 2 presents the results obtained before and after dy-

namicmodiication for various scenes. Beforemodiication,

the average error for short, medium, or long distance at

the dynamic scene of 20–60 kph was between 1.59 m (Test

2-Orig. for 20 kph) and 3.20 m (Test 2-Orig. for 60 kph).

After modiication, the average error was between 0.41 m

(Test 1-Pro. for 60 kph) and 0.76m (Test 2-Pro. for 60 kph).

For amediumor short distance (within the range of 100m),

the error was modiied from no smaller than 1.07 m (Test

2-Orig. for 20 kph) to no greater than 0.52 (Test 2-Pro. for

60 kph).
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Fig. 10. Experimental results

TABLE 2

COMPARISONWITH THE PROPOSED DYNAMIC CORRECTION RESULTS AND ORIGINAL DATA (METER)

Target

Velocity

(kph)

Target

Distance

(m)

Test

Data 1

Test

Data 2

Test

Data 3

Total

Average

Saving

(%)

Orig.

(m)

Pro.

(m)

Saving

(%)

Orig.

(m)

Pro.

(m)

Saving

(%)

Orig.

(m)

Pro.

(m)

Saving

(%)

20 <100 1.27 0.28 77 1.07 0.20 81 1.29 0.32 75 59

≥100 2.32 1.19 48 2.13 1.03 51 2.27 1.13 50

Avg. 1.79 0.73 59 1.59 0.61 61 1.77 0.72 59

40 <100 1.46 0.26 82 1.68 0.29 82 1.45 0.23 84 74

≥100 3.07 0.89 71 3.20 0.99 69 3.10 0.93 70

Avg. 2.12 0.52 75 2.34 0.59 74 2.12 0.51 75

60 <100 1.63 0.29 82 2.41 0.52 78 1.63 0.40 75 78

≥100 3.75 0.62 83 4.20 1.06 74 4.07 0.92 77

Avg. 2.37 0.41 82 3.20 0.76 76 2.45 0.57 76

II. CONCLUSION

The paper presents an innovation dynamic obstacle correc-

tion algorithm based on the Kalman ilter observation error

model. The veriication procedures of the proposed algo-

rithm are summarized below:

• Equipment installation:

a. The radar is ixed at tripod, and then this position is set

as the original point.

b. The RTK-GPS is installed on the target vehicle.

• Data collection:

a. The data of the above two sensors renders synchroniza-

tion as necessary.

b. When the subject car forwards to the front, the data col-

lection is enabled until the speed accelerates to a specii-
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cation speed, and then the speed would be set in a cruise

control condition.

• Each radar point information, which includes obstacle

distance xKa′ , and relative speed vKal, is obtained by the

Kalman ilter observation errormodel. Besides, the current

distance of obstacle is received based on RTK-GPS.

• Substituting the above information into the following

equation:

∆t =
(
(xRTK − xKal)

T
vKal

)
/
(
vTKalvKal

)
• Substituting∆t into the dynamic compensation equation,

and then can be obtained:

x̂out = xKal + vKal∆t

According to the above procedures, steps 1 to 4 are mainly

responsible for collecting and analyzing the input data.

On the actual application, step 5 which is lower complex-

ity computation can be directly used to compute the dy-

namic compensation results. From experimental results,

it’s shown that the proposed method can achieve a stable

detection and effectively reduce the detection error of dy-

namic scene, which is achieved as 59%, 74%, and 78% im-

proving in 20kph, 40kph, and 60kph relative speed when

comparing with the original data.
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